Research Article
BibTex RIS Cite

Çelik Cürufu ile Yapılan Yol Katmanlarının Sayısal Analizleri

Year 2023, , 1661 - 1673, 01.12.2023
https://doi.org/10.2339/politeknik.1199022

Abstract

Yol yapısında tekrarlı yüklere bağlı olarak tekerlek izi, yüzeysel veya derin çatlak oluşumu gibi deformasyonların artması sonucunda kaplamanın servis ömrü azalmakta böylece bakım maliyetleri artmaktadır. Hem kaynak kıtlığı hem de atıkların bertaraf edilmesi amacıyla doğal agrega yerine demir-çelik üretiminin yan ürünü olan çelik cürufu kullanımı oldukça yaygınlaşmaktadır. Çelik cürufu mevsimsel yaşanan bazı değişikliklere ve yorulma davranışına karşı gösterdiği direnç dolayısıyla kullanımının, mekanik ve çevre koşulları açısından faydalı olacağı için yol üst yapı tasarımında temel, alt zemin, çimento kaplama vb. tabakalarda doğal agregaların ikamesi olarak kullanımı tercih edilmektedir. Bu sayede hem doğal kaynakların kullanımı azalacak hem de sürekli olarak artan atık cürufların kullanımı ile doğaya vereceği zarar en aza indirilmiş olacaktır. Bu çalışmada, çelik cürufun temel ya da alttemel tabakalarında kullanılmasının etkisi sonlu elemanlar yöntemiyle dinamik analizler yapılarak araştırılmıştır. 400 kPa değerinde tekrarlı tekerlek yükleri altında yapılan sayısal analizler sonucunda alttemel tabakasında çelik cüruf malzeme kullanımı sonucunda elde eldilen düşey deformasyon değerleri literatürde yer alan diğer bir malzeme olan kireç taşı içerikli agreganın kullanımındaki deformasyon değerlerinden daha düşük elde edilmiştir. Bulgular ilk 50 yükleme adımında minimum deformasyon değerleri sırasıyla CC ve KC kesitlerinde meydana geldiğini göstermektedir.

References

  • [1] Bai F., Yang X., and Zeng G., “A stochastic viscoelastic–viscoplastic constitutive model and its application to crumb rubber modified asphalt mixtures”, Materials & Design, 89: 802–809, (2016).
  • [2] Helwany S., Dyer J., and Leidy J., “Finite-Element Analyses of Flexible Pavements”, Journal of Transportation Engineering, 124(5): 491-499, (1998).
  • [3] Lazizi A., Trouzine H., Asroun A., and Belabdelouhab F., “Numerical Simulation of Tire Reinforced Sand behind Retaining Wall Under Earthquake Excitation”, Engineering, Technology & Applied Science Research, 4(2), 605–611, (2014).
  • [4] Huang Y.H., “Pavement Analysis and Design”, Pearson/Prentice Hall, 2nd ed. Upper Saddle River, USA, (2003).
  • [5] Carvalho S. Z., Vernilli F., Almeida B., Demarco M., and Silva S. N., “The recycling effect of BOF slag in the portland cement properties”, Resources, Conservation and Recycling, 127, 216-220, (2017).
  • [6] Karadağ H., Fırat S., and Işık N. S., “Çelikhane cürufunun yol temel ve alttemel malzemesi olarak kullanılması”, Politeknik Dergisi, 23(3), 799-812, (2020).
  • [7] Ahmedzade P., and Sengoz B. “Evaluation of steel slag coarse aggregate in hot mix asphalt concrete”, Journal of Hazardous Materials, 165(1-3), 300-305, (2009).
  • [8] Li L., Ling T. C., and Pan S. Y., “Environmental benefit assessment of steel slag utilization and carbonation: A systematic review”, Science of The Total Environment, 806, 150280, (2022).
  • [9] Rađenović A., Malina J., and Sofilić T., “Characterization of ladle furnace slag from carbon steel production as a potential adsorbent”, Advances in Materials Science and Engineering, 198240, (2013).
  • [10] Oluwasola E. A., Hainin M. R., and Aziz M. M. A., “Characteristics and utilization of steel slag in road construction”, Jurnal Teknologi, 70(7), (2014).
  • [11] TOBB, “Türkiye Demir ve Demir Dişi Metaller Meclisi Raporu 2020”, TOBB Yayınları, 2021/21, 978-605-137-711-7, (2021).
  • [12] AISBL W.S.A, “2022 World Steel in Figures”, World Steel Association, Avenue de Tervueren 270, Brussels, Belgium, (2022).
  • [13] Türkiye Çelik Üreticileri Derneği, “Türkiye Çelik Üreticileri Derneği Basın Bülteni”, Turkish Steel Producers Association, (2020).
  • [14] Jianga Y., Ling T. C., Shia C., & Pan S. Y., “Characteristics of steel slags and their use in cement and concrete-A review”. Resources, Conservation and Recycling, 136, 187-197, (2018).
  • [15] Ren P., Ling T. C., & Mo K. H., “Recent advances in artificial aggregate production”, Journal of Cleaner Production, 291, 125215, (2021).
  • [16] Birat J. P. “Sustainability footprint of steelmaking byproducts”, Ironmaking & Steelmaking, 39(4), 270-277, (2012).
  • [17] Harvey J., Lea J., Kim C., Coleri E., Zaabar I., Louhghalam A., Chatti K., Buscheck J., Butt A., “Simulation of cumulative annual impact of pavement structural response on vehicle fuel economy for California test sections”. UC Davis: University of California Pavement Research Center, (2016).
  • [18] Behiry A. E. A. E. M., “Evaluation of steel slag and crushed limestone mixtures as subbase material in flexible pavement”, Ain Shams Engineering Journal, 4(1), 43-53, (2013).
  • [19] Henríquez P. A., Aponte D., Ibáñez-Insa J., and Bizinotto M. B. “Ladle furnace slag as a partial replacement of Portland cement”, Construction and Building Materials, 289, 123106, (2021).
  • [20] Poh H. Y., Ghataora G. S., & Ghazireh N., “Soil stabilization using basic oxygen steel slag fines”, Journal of Materials in Civil Engineering, 18(2), 229-240, (2006).
  • [21] Kavussi A., Jalili Qazizadeh M., and Hassani A., “Fatigue behavior analysis of asphalt mixes containing electric arc furnace (EAF) steel slag”, Journal of Rehabilitation in Civil Engineering, 3(1), 74-86, (2015).
  • [22] Saevarsdottir T., and Erlingsson, S. “Modelling of responses and rutting profile of a flexible pavement structure in a heavy vehicle simulator test”, Road Materials and Pavement Design, 16(1), 1-18, (2015).
  • [23] Al-Humeidawi B., “Experimental characterization of rutting performance of HMA designed with aggregate gradations according to Superpave and Marshall methods”, World Journal of Engineering and Technology, 4(3), 477-487, (2016).
  • [24] Moghaddam T. B., Karim M. R., and Abdelaziz M., “A review on fatigue and rutting performance of asphalt mixes”, Scientific Research and Essays, 6(4), 670-682, (2011).
  • [25] Moghaddam T. B., Soltani M., and Karim M. R., “Experimental characterization of rutting performance of polyethylene terephthalate modified asphalt mixtures under static and dynamic loads”, Construction and Building Materials, 65, 487-494, (2014).
  • [26] Christopher B.R., Schwartz C., Boudreau R., “FHWA NHI-05-037 geotechnical aspects of pavements reference manual”, US Department of Transportation, Federal Highway Administration, Washington, DC, (2006).
  • [27] Karadag H., Fırat S., Işık N.S., Yılmaz G., “Determination of permanent deformation of flexible pavements using finite element model”, Građevinar, 74(6), 471-480, (2022).
  • [28] Zhu T., Ma T., Huang X., and Wang S., “Evaluating the rutting resistance of asphalt mixtures using a simplified triaxial repeated load test”, Construction and Building
  • [29] O’mahony M. J., Ueberschaer A., Owende P. M. O., and Ward S. M., “Bearing capacity of forest access roads built on peat soils”, Journal of Terramechanics, 37(3), 127-138, (2000).
  • [30] Owende P. M., Hartman A. M., Ward S. M., Gilchrist M. D., and O’Mahony M. J., “Minimizing distress on flexible pavements using variable tire pressure”, Journal of Transportation Engineering, 127(3), 254-262, (2001).
  • [31] Asim M., Ahmad M., Alam M., Ullah S., Iqbal M. J., and Ali S., “Prediction of Rutting in Flexible Pavements using Finite Element Method”, Civil Engineering Journal, 7(8), 1310-1326, (2021).
  • [32] Mo L., Shu D., Li X., Huurman M., and Wu S., “Experimental investigation of bituminous plug expansion joint materials containing high content of crumb rubber powder and granules”, Materials & Design, 37, 137-143, (2012).
  • [33] Ghadimi B., Nikraz H., and Rosano M., “Dynamic simulation of a flexible pavement layers considering shakedown effects and soil-asphalt interaction”,
  • [34] Ameri M., and Behnood A., “Laboratory studies to investigate the properties of CIR mixes containing steel slag as a substitute for virgin aggregates”, Construction and Building Materials, 26(1), 475-480, (2012).
  • [35] Jooster F. J., “Modeling Flexible Pavement Response Under Super Heavy Vehicles”, PhD dissertation. Texas A&M University, College Station, (1995).
  • [36] Saad B., Mitri H., Poorooshasb H., “Three-dimensional dynamic analysis of flexible conventional pavement foundation”, Journal of Transportation Engineering, 131(6), 460-469, (2005).
  • [37] Kim M., Tutumluer E., Kwon J., “Nonlinear pavement foundation modeling for three-dimensional finite-element analysis of flexible pavements”, International Journal of Geomechanics, 9(5), 195-208, (2009).
  • [38] Wang H., and Al-Qadi I. L., “Near-surface pavement failure under multiaxial stress state in thick asphalt pavement”, Transportation Research Record, 2154(1), 91-99, (2010).
  • [39] Rashidi M., Haeri S. M., “Evaluation of behaviors of earth and rockfill dams during construction and initial impounding using instrumentation data and numerical modeling”, Journal of Rock Mechanics and Geotechnical Engineering, 9(4), 709-725, (2017).
  • [40] Huang T., Qi S., Liu H., Yu H., Li S., “Shear properties of asphalt mixtures under triaxial compression”, Applied Sciences, 9(7), 1489, (2019).
  • [41] Sarimurat S., Tasan H. E., Işık N.S., and Fırat S., “Taş Kolon Performanslarının Hipoplastik Model ile Analizi”, Politeknik Dergisi, 24 (3), 997-1007, (2021).
  • [42] Zaghloul S. M., and White T., “Use of a three-dimensional, dynamic finite element program for analysis of flexible pavement”, Transportation Research Record, 1388, (1993).
  • [43] Al-Qadi I. L., Wang H., and Tutumluer E., “Dynamic analysis of thin asphalt pavements by using cross-anisotropic stress-dependent properties for granular layer”, Transportation Research Record, 2154(1), 156-163, (2010).
  • [44] Ghadimi B., Nega A., and Nikraz H., “Simulation of shakedown behavior in pavement’s granular layer”, International Journal of Engineering and Technology (IJET), 7(4), 198-203, (2015).
  • [45] Roldan-Oliden P., and Calvo-Jurado C., “Influence of traffic and road surface materials on elastic behavior of layered pavements”, Politeknik Dergisi, 25(2), 855-860, (2022).

Numerical Analysis of Road Layers Made with Steel Slag

Year 2023, , 1661 - 1673, 01.12.2023
https://doi.org/10.2339/politeknik.1199022

Abstract

Repeated loads in the road structure decrease the service life of the pavement and increase the maintenance costs with the increase in deformations such as rutting and superficial or deep crack formation. The use of steel slag, which is a by-product of iron-steel production, instead of natural aggregate, is becoming very common for both resource scarcity and waste disposal. Since the use of steel slag will be beneficial in terms of mechanical and environmental conditions due to its resistance to some seasonal changes and fatigue behavior, it is preferred to be used as a substitute for natural aggregates in layers such as foundation, sub-floor, cement coating, etc in the road superstructure design. In this way, both the use of natural resources will be reduced and the damage to nature will be minimized by the use of waste slag, which is constantly increasing. In this study, the effect of using steel slag on the foundation or sub-base layers was investigated by performing dynamic analyses with the finite element method. As a result of numerical analyzes carried out under repeated wheel loads of 400 kPa, the vertical deformation values obtained as a result of the use of steel slag material in the subbase layer were lower than the deformation values in the use of limestone-containing aggregate, which is another material in the literature. The findings show that the minimum deformation values in the first 50 loading steps occur in the CC and KC sections, respectively.

References

  • [1] Bai F., Yang X., and Zeng G., “A stochastic viscoelastic–viscoplastic constitutive model and its application to crumb rubber modified asphalt mixtures”, Materials & Design, 89: 802–809, (2016).
  • [2] Helwany S., Dyer J., and Leidy J., “Finite-Element Analyses of Flexible Pavements”, Journal of Transportation Engineering, 124(5): 491-499, (1998).
  • [3] Lazizi A., Trouzine H., Asroun A., and Belabdelouhab F., “Numerical Simulation of Tire Reinforced Sand behind Retaining Wall Under Earthquake Excitation”, Engineering, Technology & Applied Science Research, 4(2), 605–611, (2014).
  • [4] Huang Y.H., “Pavement Analysis and Design”, Pearson/Prentice Hall, 2nd ed. Upper Saddle River, USA, (2003).
  • [5] Carvalho S. Z., Vernilli F., Almeida B., Demarco M., and Silva S. N., “The recycling effect of BOF slag in the portland cement properties”, Resources, Conservation and Recycling, 127, 216-220, (2017).
  • [6] Karadağ H., Fırat S., and Işık N. S., “Çelikhane cürufunun yol temel ve alttemel malzemesi olarak kullanılması”, Politeknik Dergisi, 23(3), 799-812, (2020).
  • [7] Ahmedzade P., and Sengoz B. “Evaluation of steel slag coarse aggregate in hot mix asphalt concrete”, Journal of Hazardous Materials, 165(1-3), 300-305, (2009).
  • [8] Li L., Ling T. C., and Pan S. Y., “Environmental benefit assessment of steel slag utilization and carbonation: A systematic review”, Science of The Total Environment, 806, 150280, (2022).
  • [9] Rađenović A., Malina J., and Sofilić T., “Characterization of ladle furnace slag from carbon steel production as a potential adsorbent”, Advances in Materials Science and Engineering, 198240, (2013).
  • [10] Oluwasola E. A., Hainin M. R., and Aziz M. M. A., “Characteristics and utilization of steel slag in road construction”, Jurnal Teknologi, 70(7), (2014).
  • [11] TOBB, “Türkiye Demir ve Demir Dişi Metaller Meclisi Raporu 2020”, TOBB Yayınları, 2021/21, 978-605-137-711-7, (2021).
  • [12] AISBL W.S.A, “2022 World Steel in Figures”, World Steel Association, Avenue de Tervueren 270, Brussels, Belgium, (2022).
  • [13] Türkiye Çelik Üreticileri Derneği, “Türkiye Çelik Üreticileri Derneği Basın Bülteni”, Turkish Steel Producers Association, (2020).
  • [14] Jianga Y., Ling T. C., Shia C., & Pan S. Y., “Characteristics of steel slags and their use in cement and concrete-A review”. Resources, Conservation and Recycling, 136, 187-197, (2018).
  • [15] Ren P., Ling T. C., & Mo K. H., “Recent advances in artificial aggregate production”, Journal of Cleaner Production, 291, 125215, (2021).
  • [16] Birat J. P. “Sustainability footprint of steelmaking byproducts”, Ironmaking & Steelmaking, 39(4), 270-277, (2012).
  • [17] Harvey J., Lea J., Kim C., Coleri E., Zaabar I., Louhghalam A., Chatti K., Buscheck J., Butt A., “Simulation of cumulative annual impact of pavement structural response on vehicle fuel economy for California test sections”. UC Davis: University of California Pavement Research Center, (2016).
  • [18] Behiry A. E. A. E. M., “Evaluation of steel slag and crushed limestone mixtures as subbase material in flexible pavement”, Ain Shams Engineering Journal, 4(1), 43-53, (2013).
  • [19] Henríquez P. A., Aponte D., Ibáñez-Insa J., and Bizinotto M. B. “Ladle furnace slag as a partial replacement of Portland cement”, Construction and Building Materials, 289, 123106, (2021).
  • [20] Poh H. Y., Ghataora G. S., & Ghazireh N., “Soil stabilization using basic oxygen steel slag fines”, Journal of Materials in Civil Engineering, 18(2), 229-240, (2006).
  • [21] Kavussi A., Jalili Qazizadeh M., and Hassani A., “Fatigue behavior analysis of asphalt mixes containing electric arc furnace (EAF) steel slag”, Journal of Rehabilitation in Civil Engineering, 3(1), 74-86, (2015).
  • [22] Saevarsdottir T., and Erlingsson, S. “Modelling of responses and rutting profile of a flexible pavement structure in a heavy vehicle simulator test”, Road Materials and Pavement Design, 16(1), 1-18, (2015).
  • [23] Al-Humeidawi B., “Experimental characterization of rutting performance of HMA designed with aggregate gradations according to Superpave and Marshall methods”, World Journal of Engineering and Technology, 4(3), 477-487, (2016).
  • [24] Moghaddam T. B., Karim M. R., and Abdelaziz M., “A review on fatigue and rutting performance of asphalt mixes”, Scientific Research and Essays, 6(4), 670-682, (2011).
  • [25] Moghaddam T. B., Soltani M., and Karim M. R., “Experimental characterization of rutting performance of polyethylene terephthalate modified asphalt mixtures under static and dynamic loads”, Construction and Building Materials, 65, 487-494, (2014).
  • [26] Christopher B.R., Schwartz C., Boudreau R., “FHWA NHI-05-037 geotechnical aspects of pavements reference manual”, US Department of Transportation, Federal Highway Administration, Washington, DC, (2006).
  • [27] Karadag H., Fırat S., Işık N.S., Yılmaz G., “Determination of permanent deformation of flexible pavements using finite element model”, Građevinar, 74(6), 471-480, (2022).
  • [28] Zhu T., Ma T., Huang X., and Wang S., “Evaluating the rutting resistance of asphalt mixtures using a simplified triaxial repeated load test”, Construction and Building
  • [29] O’mahony M. J., Ueberschaer A., Owende P. M. O., and Ward S. M., “Bearing capacity of forest access roads built on peat soils”, Journal of Terramechanics, 37(3), 127-138, (2000).
  • [30] Owende P. M., Hartman A. M., Ward S. M., Gilchrist M. D., and O’Mahony M. J., “Minimizing distress on flexible pavements using variable tire pressure”, Journal of Transportation Engineering, 127(3), 254-262, (2001).
  • [31] Asim M., Ahmad M., Alam M., Ullah S., Iqbal M. J., and Ali S., “Prediction of Rutting in Flexible Pavements using Finite Element Method”, Civil Engineering Journal, 7(8), 1310-1326, (2021).
  • [32] Mo L., Shu D., Li X., Huurman M., and Wu S., “Experimental investigation of bituminous plug expansion joint materials containing high content of crumb rubber powder and granules”, Materials & Design, 37, 137-143, (2012).
  • [33] Ghadimi B., Nikraz H., and Rosano M., “Dynamic simulation of a flexible pavement layers considering shakedown effects and soil-asphalt interaction”,
  • [34] Ameri M., and Behnood A., “Laboratory studies to investigate the properties of CIR mixes containing steel slag as a substitute for virgin aggregates”, Construction and Building Materials, 26(1), 475-480, (2012).
  • [35] Jooster F. J., “Modeling Flexible Pavement Response Under Super Heavy Vehicles”, PhD dissertation. Texas A&M University, College Station, (1995).
  • [36] Saad B., Mitri H., Poorooshasb H., “Three-dimensional dynamic analysis of flexible conventional pavement foundation”, Journal of Transportation Engineering, 131(6), 460-469, (2005).
  • [37] Kim M., Tutumluer E., Kwon J., “Nonlinear pavement foundation modeling for three-dimensional finite-element analysis of flexible pavements”, International Journal of Geomechanics, 9(5), 195-208, (2009).
  • [38] Wang H., and Al-Qadi I. L., “Near-surface pavement failure under multiaxial stress state in thick asphalt pavement”, Transportation Research Record, 2154(1), 91-99, (2010).
  • [39] Rashidi M., Haeri S. M., “Evaluation of behaviors of earth and rockfill dams during construction and initial impounding using instrumentation data and numerical modeling”, Journal of Rock Mechanics and Geotechnical Engineering, 9(4), 709-725, (2017).
  • [40] Huang T., Qi S., Liu H., Yu H., Li S., “Shear properties of asphalt mixtures under triaxial compression”, Applied Sciences, 9(7), 1489, (2019).
  • [41] Sarimurat S., Tasan H. E., Işık N.S., and Fırat S., “Taş Kolon Performanslarının Hipoplastik Model ile Analizi”, Politeknik Dergisi, 24 (3), 997-1007, (2021).
  • [42] Zaghloul S. M., and White T., “Use of a three-dimensional, dynamic finite element program for analysis of flexible pavement”, Transportation Research Record, 1388, (1993).
  • [43] Al-Qadi I. L., Wang H., and Tutumluer E., “Dynamic analysis of thin asphalt pavements by using cross-anisotropic stress-dependent properties for granular layer”, Transportation Research Record, 2154(1), 156-163, (2010).
  • [44] Ghadimi B., Nega A., and Nikraz H., “Simulation of shakedown behavior in pavement’s granular layer”, International Journal of Engineering and Technology (IJET), 7(4), 198-203, (2015).
  • [45] Roldan-Oliden P., and Calvo-Jurado C., “Influence of traffic and road surface materials on elastic behavior of layered pavements”, Politeknik Dergisi, 25(2), 855-860, (2022).
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Mürüvet Özsoy 0000-0001-8854-3306

Seyhan Fırat 0000-0003-3649-0999

Publication Date December 1, 2023
Submission Date November 3, 2022
Published in Issue Year 2023

Cite

APA Özsoy, M., & Fırat, S. (2023). Çelik Cürufu ile Yapılan Yol Katmanlarının Sayısal Analizleri. Politeknik Dergisi, 26(4), 1661-1673. https://doi.org/10.2339/politeknik.1199022
AMA Özsoy M, Fırat S. Çelik Cürufu ile Yapılan Yol Katmanlarının Sayısal Analizleri. Politeknik Dergisi. December 2023;26(4):1661-1673. doi:10.2339/politeknik.1199022
Chicago Özsoy, Mürüvet, and Seyhan Fırat. “Çelik Cürufu Ile Yapılan Yol Katmanlarının Sayısal Analizleri”. Politeknik Dergisi 26, no. 4 (December 2023): 1661-73. https://doi.org/10.2339/politeknik.1199022.
EndNote Özsoy M, Fırat S (December 1, 2023) Çelik Cürufu ile Yapılan Yol Katmanlarının Sayısal Analizleri. Politeknik Dergisi 26 4 1661–1673.
IEEE M. Özsoy and S. Fırat, “Çelik Cürufu ile Yapılan Yol Katmanlarının Sayısal Analizleri”, Politeknik Dergisi, vol. 26, no. 4, pp. 1661–1673, 2023, doi: 10.2339/politeknik.1199022.
ISNAD Özsoy, Mürüvet - Fırat, Seyhan. “Çelik Cürufu Ile Yapılan Yol Katmanlarının Sayısal Analizleri”. Politeknik Dergisi 26/4 (December 2023), 1661-1673. https://doi.org/10.2339/politeknik.1199022.
JAMA Özsoy M, Fırat S. Çelik Cürufu ile Yapılan Yol Katmanlarının Sayısal Analizleri. Politeknik Dergisi. 2023;26:1661–1673.
MLA Özsoy, Mürüvet and Seyhan Fırat. “Çelik Cürufu Ile Yapılan Yol Katmanlarının Sayısal Analizleri”. Politeknik Dergisi, vol. 26, no. 4, 2023, pp. 1661-73, doi:10.2339/politeknik.1199022.
Vancouver Özsoy M, Fırat S. Çelik Cürufu ile Yapılan Yol Katmanlarının Sayısal Analizleri. Politeknik Dergisi. 2023;26(4):1661-73.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.