Abstract
In our current world, where the importance of productivity increases, it is of great importance that the engineering materials with superior properties can be shaped in the desired quality and under the most favorable conditions. Molybdenum and its alloys, which are refractory metals, are among the unique materials found in the production of the most critical parts of the whole in high-tech applications such as space, aviation, defense and biomedical industries. Refractory metals are known as difficult-to-cut materials, and their unit costs are relatively high. These properties of materials adversely affect processing efficiency and increase production costs. In this study, wear and tool life of the cutting tools were examined during the milling operation of pure molybdenum, TZM (titanium-zirconium-molybdenum) and MHC (molybdenum-hafnium-carbon) alloys. In the experimental study, optimum cutting tools and cutting parameters were determined by considering the publications in literature. As a result of the experiments, wear images of the cutting tools were taken by digital and scanning optical microscopes (SEM). In addition, EDX analysis was also carried out on these cutting tools. In all three material groups, rapidly increasing wear was observed on the cutting tools. Flank wear was observed in machining of pure molybdenum while crater wear in was observed in machining of TZM and MHC alloys. At 4800 m3 metal removal rate, the flank wear was 0.381 mm for pure molybdenum, 0.072 mm for TZM, 0.07 mm for MHC, while crater wear reached 5.85 mm2 for TZM and 8.348 mm2 for MHC. No crater wear was observed in pure molybdenum.