Research Article
BibTex RIS Cite

Biyodizel Yakıt Kullanan İçten Yanmalı Motorlarda Aşınma-Sürtünme Optimizasyonu ve Tahmini için Taguchi ve Yapay Sinir Ağı Uygulaması

Year 2023, , 1543 - 1553, 01.12.2023
https://doi.org/10.2339/politeknik.1216411

Abstract

Dünyada ham petrolün azalması nedeniyle alternatif yakıt araştırmaları her geçen gün artmaktadır. Dizel motorlarda petrole alternatif yakıt kullanılmasının diğer bir amacıda çevreye daha az kirletici emisyon salmasıdır. Alternatif yakıtlarda dışarıya temiz emisyon salmasına karşın aynı zamanda motor veriminin de yüksek olması istenmektedir. Dizel motorlarında dizel yakıtına alternatif en iyi yakıt biyodizellerdir. Ayrıca motorlarda verim kaybının azaltılması segman-silinidir çifti arasındaki sürtünme ve aşınma miktarını azaltılması ile olmaktadır. Bu çalışmada; dizel motorlarda alternatif yakıt olarak yaygın kullanılan biyodizel yakıtının segman-silindir çifti arasındaki sürtünme ve aşınma davranışları dizel yakıtına göre karşılaştırılmıştır. Yapılan çalışma üç aşamadan oluşmaktadır. Çalışmanın birinci aşamasında Taguchi yöntemi kullanılarak sürtünme ve aşınma karakteristiklerinin optimum şartları verren deney parametreleri belirlenmiştir. İkinci aşamada, deneysel çalışma yapılarak dizel ve biyodizel yakıtının tribolojik özellikleri incelenmiştir. Çalışmanın son aşamasında ise segman-silindir çifti arasında oluşan aşınma mekanizması yapay sinir ağları (YSA) ile modellenmiştir. Yapılan çalışma ile; biyodizelin dizel yakıtına göre sürtünme katsayısının daha düşük olması ve bu nedenle aşınma miktarının daha düşük olduğu saptanmıştır. Aşınma miktarları karşılaştırıldığında optimum şartlar; biyodizel yakıtı, 150d/d ve 40 N yük altında elde edilmiştir. Deney sonuçlar YSA model ile tahmin edilmiştir. Bu sayede deney sayıları azaltılarak segman-silindir çifti arasındaki tribolojik özellikler incelenebilecektir.

References

  • [1] İ. Cesur, V. Ayhan, A. Parlak, Ö. Savaş, Z. Aydın., The Effects of Different Fuels on Wear between Piston Ring and Cylinder, Hindawi Publishing Corporation, Advances in Mechanical Engineering, Article ID 503212, 8 pages, 2014/503212, (2014).
  • [2] J.B.Heywood, International Combustion Engine Fundamentals, McGraw Hill Book Company, New York, (1988).
  • [3] İpci, D. , Karabulut, H. "Dynamic and Thermodynamic Examination of a Two-Stroke Internal Combustion Engine". Politeknik Dergisi 19: 141-154, (2016 ).
  • [4] C. S. Tung, G. Hong, Tribological characteristics and surface interaction between piston ring coatings and a blend of energy-conserving oils and ethanol fuels, Wear, 255, 7–12, (2003).
  • [5] Gülseven, H. C. , Özdemir, V. "Dört Silindirli Bir Dizel Motorun Balancer Tasarım ve Analizleri". Politeknik Dergisi: 1-1,(2022 ).
  • [6] C. Sung-Woo, C. Sang-Min, B.Choong-Sik, Frictional modes of barrel shaped piston rings under flooded lubrication, Tribology International, 33, 8, (2000).
  • [7] Truhan, J.J., Qu. J., Blau. P., J. A ring test to measure friction and wear of heavy duty diesel engine piston rings and cylinder liners using realistic lubricants”, University of Tennessee, Knoxville, TN 37996, USA, (1996).
  • [8] Demirci, E. , Topgül, T. , Özel, U. "Buji İle Ateşlemeli Bir Motorda İkincil Hava Enjeksiyonunun Egzoz Emisyonları ve Katalitik Konvertör Verimine Etkisinin Deneysel Analizi". Politeknik Dergisi 25: 861-869, (2022 ).
  • [9] B.S. Andersson, Company perspectives in vehicle tribology – Volvo, 17th Leeds- Lyon Symposium on Tribology - Vehicle Tribology, 18:503–506, (1991).
  • [10] P.C. Mishra, H. Rahnejat, P.D.King. Tribology of the ring-bore conjunction subject to a mixed regime of lubrication, Proc. IMechE Part C: J. Mechanical Engineering Science, 223:987–998, (2009).
  • [11] Calam, A. , İçingür, Y. "Hava Fazlalık Katsayısı ve Oktan Sayısı Değişiminin HCCI Yanma Karakteristiklerine ve Motor Performansına Etkileri". Politeknik Dergisi 22: 607-618, (2019 ).
  • [12] M. Priest, C.M. Taylor. Automobile engine tribology-approaching the surface, School of Mechinical Engineering. The University of leeds, Woodhouse Lane, Leeds, LS2 JT, UK. (2000).
  • [13] C.M. Taylor, Lubrication Regimes and Internal Combustion Engine, Elsevier Science Publishers, Leeds England (1993).
  • [14] Sapaun SM, Masjuki HH, Azlan A. The use of palm oil as diesel fuel substitute. J Power Energy – Part A;210:47–53. (1996).
  • [15] Murayama T, Oh Y-T, Miyamoto N, Chikahisa T, Takagi. N. Low carbon flower build up, low smoke and efficient diesel operation with vegetable oils by conversion to monoesters and blending with diesel oil or alcohols. SAE Paper 841161, (1984).
  • [16] Ali Y, Hanna Milford A, Borg Joseph E... Optimization of diesel Methyl tallowate and ethanol blend for reducing emissions from diesel engine. Bioresour Technol; 52:237–43, (1995).
  • [17] Manigandan S, Gunasekar P, Devipriya J, Nithya S, Emission and injection characteristics of corn biodiesel blends in diesel engine. Fuel;235:723–35, (2019).
  • [18] Usta N, Can Ö, ve Özgtürk E.,Comparison of biodiesel and ethanol as alternative diesel engine fuel, Pamukkale University Faculty of Engineering. J Eng Sci 3, (2005).
  • [19] Ozsezen AN, Canakci M.,Determination of the performance and combustion characteristics of a diesel engine with canola and waste palm oil methyl esters. Energy Conserv Manage, 52:108–16, (2011).
  • [20] Devan PK, Mahalakshmi NV. Performance emission and combustion characteristics of poon oil and its diesel blends in a DI diesel engine. Fuel 2009;88:861–7, (2009).
  • [21] Karaosmanoğlu F, Kurt G, Özaktaş T. (2000). Long term CI engine test of sunflower oil. Renewable Energy, 19:219–21, (2000).
  • [22] S.H. Hamdana, W.W.F. Chongcidie, J.-H. Ngbif, C.T. Chongcid, S. Rajoocid. A study of the tribological impact of biodiesel dilution on engine lubricant properties”, Process Safety and Environmental Protection, (2017).
  • [23] T. Chaudhari, B. Sutaria. Investigation of friction characteristics insegmented piston ring liner assembly of ICengine, Perspectives in Science 8, 599—602, (2016).
  • [24] S. Hisham , K. Kadirgama , D. Ramasamy , M.M. Noor , A.K. Amirruddin , G. Najafi , M.M. Rahman. (2017). Waste cooking oil blended with the engine oil for reduction of friction and wear on piston skirt, Fuel 205, 247–261, (2017).
  • [25] S.W. Cho, S.M. Choi, C.S. Bae. Frictional models of barrel shaped piston rings under folded lubrication, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, KAIST 373-1,1, (2000).
  • [26] Z.Y. Wu, H.W. Wu, C.H. Hung. Applying Taguchi method to combustion characteristics and optimal factors determination in diesel/biodiesel engines with port-injecting LPG, Fuel 117, 8–14, (2014).
  • [27] T. Ganapathy, K. Murugesan , R.P. Gakkhar. Performance optimization of Jatropha biodiesel engine model using Taguchi approach, Applied Energy 86, 2476–2486, (2009).
  • [28] Y.H. Tan, M.O. Abdullah, C.N. Hipolito, N.S.A. Zauzi. Application of RSM and Taguchi methods for optimizing the transesterification of waste cooking oil catalyzed by solid ostrich and chicken-eggshell derived CaO, Renewable Energy 114, 437-447, (2017).
  • [29] Babu, D., Thangarasu, V., and Ramanathan, A. Artificial neural network approach on forecasting diesel engine characteristics fuelled with waste frying oil biodiesel, Applied Energy, 263,114612.2020, (2020).
  • [30] Huang M-L, Hung Y-H, Yang Z-S. Validation of a method using Taguchi, response surface, neural network, and genetic algorithm. Measurement, 94:284–294, (2016).
  • [31] Tosun, E., Aydin, K., and Bilgili, M. Comparison of linear regression and artificial neural network model of a diesel engine fueled with biodiesel-alcohol mixtures”, Alexandria Engineering Journal, 55(4), 3081–3089, (2016).
  • [32] Yaqub, M., Eren, B., and Eyupoglu, V. Soft computing techniques in prediction Cr(VI) removal efficiency of polymer inclusion membranes”, Environ. Eng. Res., 25(3), 418–425, (2019).
  • [33] Hasani, G., Daraei, H., Shahmoradi, B., Gharibi, F., Maleki, A., Yetilmezsoy, K., and McKay, G. A novel ANN approach for modeling of alternating pulse current electrocoagulation-flotation (APC-ECF) process: Humic acid removal from aqueous media”, Process Saf. Environ. Prot., 117, 111–124, (2018).
  • [34] Aber, S., Amani-Ghadim, A. R., and Mirzajani, V., Removal of Cr(VI) from polluted solutions by electrocoagulation: Modeling of experimental results using artificial neural network”, J. Hazard. Mater., 171(1–3), 484–490, (2009).
  • [35] Dogan, E., Ates, A., Yilmaz, E. C., and Eren, B., Application of artificial neural networks to estimate wastewater treatment plant inlet biochemical oxygen demand, Environ. Prog., 27(4), 439–446, (2008).

An Artificial Neural Network and Taguchi Approach to the Optimization of Wear and Friction for Biodiesel Fuel

Year 2023, , 1543 - 1553, 01.12.2023
https://doi.org/10.2339/politeknik.1216411

Abstract

Alternative fuel researches are increasing day by day due to the decrease in crude oil in the world. Another purpose of using alternative fuel to petroleum in diesel engines is to release fewer polluting emissions to the environment. Although it releases clean emissions in alternative fuels, it is also desirable to have high engine efficiency. Biodiesel is the best alternative to diesel fuel in diesel engines. In addition, the reduction of efficiency loss in engines is achieved by reducing the amount of friction and wear between the ring-cylinder couple. In this study; The friction and wear behavior of biodiesel fuel, which is widely used as an alternative fuel in diesel engines, between the ring-cylinder couple was compared with diesel fuel. The study consists of three stages; In the first stage of the study, the experimental parameters that give the optimum conditions of friction and wear characteristics were determined by using the Taguchi method. In the second stage, the tribological properties of diesel and biodiesel fuel were investigated by conducting an experimental study. In the last stage of the study, the wear mechanism between the ring-cylinder pair was modeled with artificial neural networks (ANN). With the work done; It has been determined that the friction coefficient of biodiesel is lower than diesel fuel and therefore the amount of wear is lower. Optimum conditions when the amount of wear is compared; biodiesel fuel was obtained under 150 rpm and 40 N load. Experimental results were predicted by the developed ANN model. In this way, the tribological properties between the ring-cylinder pair can be examined by reducing the number of experiments.

References

  • [1] İ. Cesur, V. Ayhan, A. Parlak, Ö. Savaş, Z. Aydın., The Effects of Different Fuels on Wear between Piston Ring and Cylinder, Hindawi Publishing Corporation, Advances in Mechanical Engineering, Article ID 503212, 8 pages, 2014/503212, (2014).
  • [2] J.B.Heywood, International Combustion Engine Fundamentals, McGraw Hill Book Company, New York, (1988).
  • [3] İpci, D. , Karabulut, H. "Dynamic and Thermodynamic Examination of a Two-Stroke Internal Combustion Engine". Politeknik Dergisi 19: 141-154, (2016 ).
  • [4] C. S. Tung, G. Hong, Tribological characteristics and surface interaction between piston ring coatings and a blend of energy-conserving oils and ethanol fuels, Wear, 255, 7–12, (2003).
  • [5] Gülseven, H. C. , Özdemir, V. "Dört Silindirli Bir Dizel Motorun Balancer Tasarım ve Analizleri". Politeknik Dergisi: 1-1,(2022 ).
  • [6] C. Sung-Woo, C. Sang-Min, B.Choong-Sik, Frictional modes of barrel shaped piston rings under flooded lubrication, Tribology International, 33, 8, (2000).
  • [7] Truhan, J.J., Qu. J., Blau. P., J. A ring test to measure friction and wear of heavy duty diesel engine piston rings and cylinder liners using realistic lubricants”, University of Tennessee, Knoxville, TN 37996, USA, (1996).
  • [8] Demirci, E. , Topgül, T. , Özel, U. "Buji İle Ateşlemeli Bir Motorda İkincil Hava Enjeksiyonunun Egzoz Emisyonları ve Katalitik Konvertör Verimine Etkisinin Deneysel Analizi". Politeknik Dergisi 25: 861-869, (2022 ).
  • [9] B.S. Andersson, Company perspectives in vehicle tribology – Volvo, 17th Leeds- Lyon Symposium on Tribology - Vehicle Tribology, 18:503–506, (1991).
  • [10] P.C. Mishra, H. Rahnejat, P.D.King. Tribology of the ring-bore conjunction subject to a mixed regime of lubrication, Proc. IMechE Part C: J. Mechanical Engineering Science, 223:987–998, (2009).
  • [11] Calam, A. , İçingür, Y. "Hava Fazlalık Katsayısı ve Oktan Sayısı Değişiminin HCCI Yanma Karakteristiklerine ve Motor Performansına Etkileri". Politeknik Dergisi 22: 607-618, (2019 ).
  • [12] M. Priest, C.M. Taylor. Automobile engine tribology-approaching the surface, School of Mechinical Engineering. The University of leeds, Woodhouse Lane, Leeds, LS2 JT, UK. (2000).
  • [13] C.M. Taylor, Lubrication Regimes and Internal Combustion Engine, Elsevier Science Publishers, Leeds England (1993).
  • [14] Sapaun SM, Masjuki HH, Azlan A. The use of palm oil as diesel fuel substitute. J Power Energy – Part A;210:47–53. (1996).
  • [15] Murayama T, Oh Y-T, Miyamoto N, Chikahisa T, Takagi. N. Low carbon flower build up, low smoke and efficient diesel operation with vegetable oils by conversion to monoesters and blending with diesel oil or alcohols. SAE Paper 841161, (1984).
  • [16] Ali Y, Hanna Milford A, Borg Joseph E... Optimization of diesel Methyl tallowate and ethanol blend for reducing emissions from diesel engine. Bioresour Technol; 52:237–43, (1995).
  • [17] Manigandan S, Gunasekar P, Devipriya J, Nithya S, Emission and injection characteristics of corn biodiesel blends in diesel engine. Fuel;235:723–35, (2019).
  • [18] Usta N, Can Ö, ve Özgtürk E.,Comparison of biodiesel and ethanol as alternative diesel engine fuel, Pamukkale University Faculty of Engineering. J Eng Sci 3, (2005).
  • [19] Ozsezen AN, Canakci M.,Determination of the performance and combustion characteristics of a diesel engine with canola and waste palm oil methyl esters. Energy Conserv Manage, 52:108–16, (2011).
  • [20] Devan PK, Mahalakshmi NV. Performance emission and combustion characteristics of poon oil and its diesel blends in a DI diesel engine. Fuel 2009;88:861–7, (2009).
  • [21] Karaosmanoğlu F, Kurt G, Özaktaş T. (2000). Long term CI engine test of sunflower oil. Renewable Energy, 19:219–21, (2000).
  • [22] S.H. Hamdana, W.W.F. Chongcidie, J.-H. Ngbif, C.T. Chongcid, S. Rajoocid. A study of the tribological impact of biodiesel dilution on engine lubricant properties”, Process Safety and Environmental Protection, (2017).
  • [23] T. Chaudhari, B. Sutaria. Investigation of friction characteristics insegmented piston ring liner assembly of ICengine, Perspectives in Science 8, 599—602, (2016).
  • [24] S. Hisham , K. Kadirgama , D. Ramasamy , M.M. Noor , A.K. Amirruddin , G. Najafi , M.M. Rahman. (2017). Waste cooking oil blended with the engine oil for reduction of friction and wear on piston skirt, Fuel 205, 247–261, (2017).
  • [25] S.W. Cho, S.M. Choi, C.S. Bae. Frictional models of barrel shaped piston rings under folded lubrication, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, KAIST 373-1,1, (2000).
  • [26] Z.Y. Wu, H.W. Wu, C.H. Hung. Applying Taguchi method to combustion characteristics and optimal factors determination in diesel/biodiesel engines with port-injecting LPG, Fuel 117, 8–14, (2014).
  • [27] T. Ganapathy, K. Murugesan , R.P. Gakkhar. Performance optimization of Jatropha biodiesel engine model using Taguchi approach, Applied Energy 86, 2476–2486, (2009).
  • [28] Y.H. Tan, M.O. Abdullah, C.N. Hipolito, N.S.A. Zauzi. Application of RSM and Taguchi methods for optimizing the transesterification of waste cooking oil catalyzed by solid ostrich and chicken-eggshell derived CaO, Renewable Energy 114, 437-447, (2017).
  • [29] Babu, D., Thangarasu, V., and Ramanathan, A. Artificial neural network approach on forecasting diesel engine characteristics fuelled with waste frying oil biodiesel, Applied Energy, 263,114612.2020, (2020).
  • [30] Huang M-L, Hung Y-H, Yang Z-S. Validation of a method using Taguchi, response surface, neural network, and genetic algorithm. Measurement, 94:284–294, (2016).
  • [31] Tosun, E., Aydin, K., and Bilgili, M. Comparison of linear regression and artificial neural network model of a diesel engine fueled with biodiesel-alcohol mixtures”, Alexandria Engineering Journal, 55(4), 3081–3089, (2016).
  • [32] Yaqub, M., Eren, B., and Eyupoglu, V. Soft computing techniques in prediction Cr(VI) removal efficiency of polymer inclusion membranes”, Environ. Eng. Res., 25(3), 418–425, (2019).
  • [33] Hasani, G., Daraei, H., Shahmoradi, B., Gharibi, F., Maleki, A., Yetilmezsoy, K., and McKay, G. A novel ANN approach for modeling of alternating pulse current electrocoagulation-flotation (APC-ECF) process: Humic acid removal from aqueous media”, Process Saf. Environ. Prot., 117, 111–124, (2018).
  • [34] Aber, S., Amani-Ghadim, A. R., and Mirzajani, V., Removal of Cr(VI) from polluted solutions by electrocoagulation: Modeling of experimental results using artificial neural network”, J. Hazard. Mater., 171(1–3), 484–490, (2009).
  • [35] Dogan, E., Ates, A., Yilmaz, E. C., and Eren, B., Application of artificial neural networks to estimate wastewater treatment plant inlet biochemical oxygen demand, Environ. Prog., 27(4), 439–446, (2008).
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Hüseyin Kahraman 0000-0003-3322-9904

İdris Cesur 0000-0001-7487-5676

Beytullah Eren 0000-0001-6747-7004

Aslan Çoban 0000-0001-5896-2964

Publication Date December 1, 2023
Submission Date December 8, 2022
Published in Issue Year 2023

Cite

APA Kahraman, H., Cesur, İ., Eren, B., Çoban, A. (2023). Biyodizel Yakıt Kullanan İçten Yanmalı Motorlarda Aşınma-Sürtünme Optimizasyonu ve Tahmini için Taguchi ve Yapay Sinir Ağı Uygulaması. Politeknik Dergisi, 26(4), 1543-1553. https://doi.org/10.2339/politeknik.1216411
AMA Kahraman H, Cesur İ, Eren B, Çoban A. Biyodizel Yakıt Kullanan İçten Yanmalı Motorlarda Aşınma-Sürtünme Optimizasyonu ve Tahmini için Taguchi ve Yapay Sinir Ağı Uygulaması. Politeknik Dergisi. December 2023;26(4):1543-1553. doi:10.2339/politeknik.1216411
Chicago Kahraman, Hüseyin, İdris Cesur, Beytullah Eren, and Aslan Çoban. “Biyodizel Yakıt Kullanan İçten Yanmalı Motorlarda Aşınma-Sürtünme Optimizasyonu Ve Tahmini için Taguchi Ve Yapay Sinir Ağı Uygulaması”. Politeknik Dergisi 26, no. 4 (December 2023): 1543-53. https://doi.org/10.2339/politeknik.1216411.
EndNote Kahraman H, Cesur İ, Eren B, Çoban A (December 1, 2023) Biyodizel Yakıt Kullanan İçten Yanmalı Motorlarda Aşınma-Sürtünme Optimizasyonu ve Tahmini için Taguchi ve Yapay Sinir Ağı Uygulaması. Politeknik Dergisi 26 4 1543–1553.
IEEE H. Kahraman, İ. Cesur, B. Eren, and A. Çoban, “Biyodizel Yakıt Kullanan İçten Yanmalı Motorlarda Aşınma-Sürtünme Optimizasyonu ve Tahmini için Taguchi ve Yapay Sinir Ağı Uygulaması”, Politeknik Dergisi, vol. 26, no. 4, pp. 1543–1553, 2023, doi: 10.2339/politeknik.1216411.
ISNAD Kahraman, Hüseyin et al. “Biyodizel Yakıt Kullanan İçten Yanmalı Motorlarda Aşınma-Sürtünme Optimizasyonu Ve Tahmini için Taguchi Ve Yapay Sinir Ağı Uygulaması”. Politeknik Dergisi 26/4 (December 2023), 1543-1553. https://doi.org/10.2339/politeknik.1216411.
JAMA Kahraman H, Cesur İ, Eren B, Çoban A. Biyodizel Yakıt Kullanan İçten Yanmalı Motorlarda Aşınma-Sürtünme Optimizasyonu ve Tahmini için Taguchi ve Yapay Sinir Ağı Uygulaması. Politeknik Dergisi. 2023;26:1543–1553.
MLA Kahraman, Hüseyin et al. “Biyodizel Yakıt Kullanan İçten Yanmalı Motorlarda Aşınma-Sürtünme Optimizasyonu Ve Tahmini için Taguchi Ve Yapay Sinir Ağı Uygulaması”. Politeknik Dergisi, vol. 26, no. 4, 2023, pp. 1543-5, doi:10.2339/politeknik.1216411.
Vancouver Kahraman H, Cesur İ, Eren B, Çoban A. Biyodizel Yakıt Kullanan İçten Yanmalı Motorlarda Aşınma-Sürtünme Optimizasyonu ve Tahmini için Taguchi ve Yapay Sinir Ağı Uygulaması. Politeknik Dergisi. 2023;26(4):1543-5.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.