Research Article
BibTex RIS Cite

Farklı Tasarım Konseptleri ile Üretilen Ahşap Esaslı Prefabrike Panellerin Yerel Bağdadi Duvara Göre Gömülü Ve Operasyonel Enerji Analizi

Year 2024, , 1491 - 1503, 25.09.2024
https://doi.org/10.2339/politeknik.1239942

Abstract

Prefabrike cephe panelleri teknoloji ile gelişen ve malzeme olanakları ile çeşitlenen yapı elemanlarıdır. Ahşap, metal, beton veya pişmiş toprak esaslı taşıyıcı malzemelerden üretilebilen bu panellerin üç tasarım konsepti bulunmaktadır: masif, sandviç ve çerçeve. Sürdürülebilir tasarımın ön planda olduğu son yıllarda ısıtma ve soğutma kaynaklı enerji tüketimi ve karbon emisyonlarının yanı sıra binalarda kullanılan malzemelerin ürettiği karbon emisyonları da önemli rol oynamaktadır. Bu çalışma, ahşap taşıyıcıya sahip masif, sandviç ve çerçeve prefabrike cephe panellerinin operasyonel ve gömülü enerji açısından incelenmesini ve karşılaştırılmasını amaçlamaktadır. Bu kapsamda seçilen örnek yerel bina üzerinden hesaplamalar yapılmıştır. Binanın sahip olduğu Bağdadi duvar ile karşılaştırıldığında, PUR yalıtım malzemesine sahip sandviç panel senaryosu %53.21 oranında enerji tasarrufu sağlamıştır. En az enerji kazancı ise %15.91 oran ile herhangi bir yalıtım ve kaplama içermeyen masif CLT panelde görülmüştür. Yapılan analizde toplam emisyon miktarları dikkate alındığında, gömülü karbon emisyonunun operasyonel karbon emisyonundan daha etkili olduğu tespit edilmiştir. Bu doğrultuda prefabrike cephe panellerinde yer alacak malzeme seçiminin önemi dikkat çekmektedir.

References

  • [1] Kolodiy, O., & Capeluto, G. “Towards zero-energy residential complexes in high-density conditions”. Indoor and Built Environment, 30(10), 1751-1765, (2021).
  • [2] EUM. “Building Industry Energy Efficiency Technology Atlas”, January, Ankara. https://webdosya.csb.gov.tr/db/meslekihizmetler/icerikler/atlas_ocak_small-20210126120540.pdf (2021, accessed 15 January 2023).
  • [3] MEUCC. “By-Law on Energy Performance of Building”, (2008).
  • [4] Turkish Statistical Institute (TUIK). “Total greenhouse gas emissions by sector 1990-2020”. available at https://data.tuik.gov.tr/Bulten/DownloadIstatistikselTablo?p=enT0SQ56KzCA/fsTjUVcTJGfPQM4h2UFlSnOHMzolXDHlPHrrJFY2ifBcwT4ak8m (2022, accessed 15 January 2023).
  • [5] Önder, H. G. “Renewable energy consumption policy in Turkey: An energy extended input-output analysis”. Renewable Energy, 175, 783–796, (2021).
  • [6] Usta, P., & Zengin, B. “The Energy Impact of Building Materials in Residential Buildings in Turkey”. Materials, 14(11), 2793, (2021).
  • [7] Demirsoy, G. & Sözen, A. “Binalarda Enerji Verimliliğinin Toplam Faktör Etkinliği”. Politeknik Dergisi, 1-1, (2022).
  • [8] Sartori, T., Drogemuller, R., Omrani, S., & Lamari, F. “A schematic framework for Life Cycle Assessment (LCA) and Green Building Rating System (GBRS)”. Journal of Building Engineering, 38, 102180, (2021).
  • [9] Figueiredo, K., Pierott, R., Hammad, A. W. A., & Haddad, A. “Sustainable material choice for construction projects: A Life Cycle Sustainability Assessment framework based on BIM and Fuzzy-AHP”. Building and Environment, 196, 107805, (2021).
  • [10] Merritt, F. S., & Ricketts, J. T. “Building design and construction handbook”. McGraw-Hill Education, (2001).
  • [11] Pan, W., Iturralde, K., Bock, T., Martinez, R. G., Juez, O. M., & Finocchiaro, P. A “Conceptual Design of an Integrated Façade System to Reduce Embodied Energy in Residential Buildings”. Sustainability, 12(14), 5730, (2020).
  • [12] Koezjakov, A., Urge-Vorsatz, D., Crijns-Graus, W., & Van den Broek, M. “The relationship between operational energy demand and embodied energy in Dutch residential buildings”. Energy and Buildings, 165, 233-245, (2018).
  • [13] Lolli, N., Fufa, S. M., & Inman, M. “A parametric tool for the assessment of operational energy use, embodied energy and embodied material emissions in the building”. Energy Procedia, 111, 21-30, (2017).
  • [14] Iddon, C. R., & Firth, S. K. “Embodied and operational energy for new-build housing: A case study of construction methods in the UK”. Energy and Buildings, 67, 479-488, (2013).
  • [15] Yang, Q., & Li, N. “Optimal design of residential balcony based on environmental benefit: A case study in hot summer and cold winter area of China”. Indoor and Built Environment, 0(0), 1-13, (2022).
  • [16] Hammond, G., & Jones, C. “Inventory of carbon & energy: ICE (Vol. 5)”. Bath: Sustainable Energy Research Team, Department of Mechanical Engineering, University of Bath, (2008).
  • [17] Zeitz, A., Griffin, C. T., & Dusicka, P. “Comparing the embodied carbon and energy of a mass timber structure system to typical steel and concrete alternatives for parking garages”. Energy and Buildings, 199, 126-133, (2019).
  • [18] Rodrigues, V., Martins, A. A., Nunes, M. I., Quintas, A., Mata, T. M., & Caetano, N. S. “LCA of constructing an industrial building: Focus on embodied carbon and energy”. Energy Procedia, 153, 420-425, (2018).
  • [19] Yıldırım, E. “The evaluation of environmental sustainability in the context of operational and embodied energy on exterior wall, examples of hotel buildings from Istanbul”, Master’s Thesis, İstanbul Technical University, Graduate Institute of Natural and Applied Sciences, İstanbul, (2018).
  • [20] Lupíšek, A., Nehasilová, M., Mančík, Š., Železná, J., Růžička, J., Fiala, C., … Hájek, P. “Design strategies for buildings with low embodied energy”. Proceedings of the Institution of Civil Engineers - Engineering Sustainability, 170(2), 65–80, (2017).
  • [21] Zhang, T., Zhong, W., & Yu, C. W. “Energy agenda of architectural formation: To progress sustainable built environment through the approach of energy-driven architectural formation”. Indoor and Built Environment, 30(10), 1591-1595, (2021).
  • [22] Akkan, A. “Comparison of prefabricated facade panels according to their materials and design concepts” (Hazır cephe panellerinin malzemelerine ve tasarım kurgu özelliklerine göre karşılaştırılması), Master’s Thesis, Karadeniz Technical University, Graduate Institute of Natural and Applied Sciences, Trabzon, (2020).
  • [23] Vural, N. “A model on the use of wood-based prefabricated systems in rural settlements in the Eastern Black Sea region”. (Doğu Karadeniz bölgesi kırsal yerleşmelerinde ahşap esaslı prefabrike sistem kullanımı üzerine bir modelleme), Ph.D Thesis, Karadeniz Technical University, Graduate Institute of Natural and Applied Sciences, Trabzon, (2006).
  • [24] TS 825. “Standard of Thermal Insulation Requirements for Buildings”, (2008).
  • [25] Sümerkan, M. R. “Building characteristics of the traditional houses in respect to the shaping factors at eastern black sea region”, Ph.D. Thesis, Karadeniz Technical University, Graduate Institute of Natural and Applied Sciences, Trabzon, (1990).
  • [26] Akkan, A. & Vural, N. “Thermal, sound and fire performance properties of prefabricated facade panels with massive, sandwich and frame design concepts”. Journal of Architectural Sciences and Applications, 7(1), 464-481, (2022).
  • [27] Singh, M. K., Mahapatra, S., & Atreya, S. K. “Solar passive features in the vernacular architecture of North-East India”. Solar Energy, 85(9), (2011).
  • [28] Işık, A. B. “Cumalıkızık’ta yeniden hımış yapı”, 3.Bin Yılda Osmanlı Köyü: Cumalıkızık Sempozyumu, Bursa Yıldırım Belediyesi, Bursa Mimarlar Odası, Barış Manço Kültür Merkezi, Bursa, (2007).
  • [29] Abey, S. T., & Anand, K. B. “Embodied energy comparison of prefabricated and conventional building construction”. Journal of The Institution of Engineers (India): Series A, 100(4), 777-790, (2019).
  • [30] Anderson, J. E., Wulfhorst, G., & Lang, W. “Energy analysis of the built environment—A review and outlook”. Renewable and Sustainable Energy Reviews, 44, 149-158, (2015).
  • [31] Aydın, N. & Bıyıkoğlu, A. “Türkiye’de Konut Tipi Binaların Isıtma Yükü Altında Ömür Maliyet Analizi Yöntemi ile Optimum Yalıtım Kalınlıklarının Belirlenmesi” Politeknik Dergisi, 22 (4), 901-911, (2019).
  • [32] Allende, A. L., & Stephan, A. “Life cycle embodied, operational and mobility-related energy and greenhouse gas emissions analysis of a green development in Melbourne, Australia”. Applied Energy, 305, 117886, (2022).
  • [33] Gong, X., Nie, Z., Wang, Z., Cui, S., Gao, F., & Zuo, T. “Life Cycle Energy Consumption and Carbon Dioxide Emission of Residential Building Designs in Beijing”. Journal of Industrial Ecology, 16(4), 576–587, (2012).
  • [34] Embodied Carbon- “The ICE Database V3.0”. https://circularecology.com/embodied-carbon-footprint-database.html (2019, accessed 17 January 2022).

Analysis of the Embodied And Operational Energy of Wood-Based Prefabricated Panels Produced with Different Design Concepts According to Vernacular

Year 2024, , 1491 - 1503, 25.09.2024
https://doi.org/10.2339/politeknik.1239942

Abstract

Prefabricated facade panels are building components that evolve with technology and offer a wide range of material possibilities. These panels can be constructed using wood, metal, concrete, or terracotta-based materials and are designed based on three concepts: massive, sandwich, and frame. In recent years, as sustainable design takes the spotlight, it is crucial to consider not only energy consumption and carbon emissions from heating and cooling but also the carbon emissions associated with the materials used in construction. This study aims to analyze prefabricated facade panels with wooden structures in terms of operational and embodied energy, providing guidance to designers in selecting suitable concepts. Calculations were conducted on a selected sample building. Compared to the traditional Baghdadi wall, the sandwich panel scenario with PUR insulation material resulted in energy savings of 53.21 percent. The massive CLT panel, which lacks insulation material or cladding, showed the lowest energy gain at 15.91 percent. Considering the overall emissions in the analysis, it has been determined that embodied carbon emissions have a greater impact than operational carbon emissions. Therefore, it is essential to emphasize the significant role of material selection for prefabricated facade panels in reducing carbon emissions.

References

  • [1] Kolodiy, O., & Capeluto, G. “Towards zero-energy residential complexes in high-density conditions”. Indoor and Built Environment, 30(10), 1751-1765, (2021).
  • [2] EUM. “Building Industry Energy Efficiency Technology Atlas”, January, Ankara. https://webdosya.csb.gov.tr/db/meslekihizmetler/icerikler/atlas_ocak_small-20210126120540.pdf (2021, accessed 15 January 2023).
  • [3] MEUCC. “By-Law on Energy Performance of Building”, (2008).
  • [4] Turkish Statistical Institute (TUIK). “Total greenhouse gas emissions by sector 1990-2020”. available at https://data.tuik.gov.tr/Bulten/DownloadIstatistikselTablo?p=enT0SQ56KzCA/fsTjUVcTJGfPQM4h2UFlSnOHMzolXDHlPHrrJFY2ifBcwT4ak8m (2022, accessed 15 January 2023).
  • [5] Önder, H. G. “Renewable energy consumption policy in Turkey: An energy extended input-output analysis”. Renewable Energy, 175, 783–796, (2021).
  • [6] Usta, P., & Zengin, B. “The Energy Impact of Building Materials in Residential Buildings in Turkey”. Materials, 14(11), 2793, (2021).
  • [7] Demirsoy, G. & Sözen, A. “Binalarda Enerji Verimliliğinin Toplam Faktör Etkinliği”. Politeknik Dergisi, 1-1, (2022).
  • [8] Sartori, T., Drogemuller, R., Omrani, S., & Lamari, F. “A schematic framework for Life Cycle Assessment (LCA) and Green Building Rating System (GBRS)”. Journal of Building Engineering, 38, 102180, (2021).
  • [9] Figueiredo, K., Pierott, R., Hammad, A. W. A., & Haddad, A. “Sustainable material choice for construction projects: A Life Cycle Sustainability Assessment framework based on BIM and Fuzzy-AHP”. Building and Environment, 196, 107805, (2021).
  • [10] Merritt, F. S., & Ricketts, J. T. “Building design and construction handbook”. McGraw-Hill Education, (2001).
  • [11] Pan, W., Iturralde, K., Bock, T., Martinez, R. G., Juez, O. M., & Finocchiaro, P. A “Conceptual Design of an Integrated Façade System to Reduce Embodied Energy in Residential Buildings”. Sustainability, 12(14), 5730, (2020).
  • [12] Koezjakov, A., Urge-Vorsatz, D., Crijns-Graus, W., & Van den Broek, M. “The relationship between operational energy demand and embodied energy in Dutch residential buildings”. Energy and Buildings, 165, 233-245, (2018).
  • [13] Lolli, N., Fufa, S. M., & Inman, M. “A parametric tool for the assessment of operational energy use, embodied energy and embodied material emissions in the building”. Energy Procedia, 111, 21-30, (2017).
  • [14] Iddon, C. R., & Firth, S. K. “Embodied and operational energy for new-build housing: A case study of construction methods in the UK”. Energy and Buildings, 67, 479-488, (2013).
  • [15] Yang, Q., & Li, N. “Optimal design of residential balcony based on environmental benefit: A case study in hot summer and cold winter area of China”. Indoor and Built Environment, 0(0), 1-13, (2022).
  • [16] Hammond, G., & Jones, C. “Inventory of carbon & energy: ICE (Vol. 5)”. Bath: Sustainable Energy Research Team, Department of Mechanical Engineering, University of Bath, (2008).
  • [17] Zeitz, A., Griffin, C. T., & Dusicka, P. “Comparing the embodied carbon and energy of a mass timber structure system to typical steel and concrete alternatives for parking garages”. Energy and Buildings, 199, 126-133, (2019).
  • [18] Rodrigues, V., Martins, A. A., Nunes, M. I., Quintas, A., Mata, T. M., & Caetano, N. S. “LCA of constructing an industrial building: Focus on embodied carbon and energy”. Energy Procedia, 153, 420-425, (2018).
  • [19] Yıldırım, E. “The evaluation of environmental sustainability in the context of operational and embodied energy on exterior wall, examples of hotel buildings from Istanbul”, Master’s Thesis, İstanbul Technical University, Graduate Institute of Natural and Applied Sciences, İstanbul, (2018).
  • [20] Lupíšek, A., Nehasilová, M., Mančík, Š., Železná, J., Růžička, J., Fiala, C., … Hájek, P. “Design strategies for buildings with low embodied energy”. Proceedings of the Institution of Civil Engineers - Engineering Sustainability, 170(2), 65–80, (2017).
  • [21] Zhang, T., Zhong, W., & Yu, C. W. “Energy agenda of architectural formation: To progress sustainable built environment through the approach of energy-driven architectural formation”. Indoor and Built Environment, 30(10), 1591-1595, (2021).
  • [22] Akkan, A. “Comparison of prefabricated facade panels according to their materials and design concepts” (Hazır cephe panellerinin malzemelerine ve tasarım kurgu özelliklerine göre karşılaştırılması), Master’s Thesis, Karadeniz Technical University, Graduate Institute of Natural and Applied Sciences, Trabzon, (2020).
  • [23] Vural, N. “A model on the use of wood-based prefabricated systems in rural settlements in the Eastern Black Sea region”. (Doğu Karadeniz bölgesi kırsal yerleşmelerinde ahşap esaslı prefabrike sistem kullanımı üzerine bir modelleme), Ph.D Thesis, Karadeniz Technical University, Graduate Institute of Natural and Applied Sciences, Trabzon, (2006).
  • [24] TS 825. “Standard of Thermal Insulation Requirements for Buildings”, (2008).
  • [25] Sümerkan, M. R. “Building characteristics of the traditional houses in respect to the shaping factors at eastern black sea region”, Ph.D. Thesis, Karadeniz Technical University, Graduate Institute of Natural and Applied Sciences, Trabzon, (1990).
  • [26] Akkan, A. & Vural, N. “Thermal, sound and fire performance properties of prefabricated facade panels with massive, sandwich and frame design concepts”. Journal of Architectural Sciences and Applications, 7(1), 464-481, (2022).
  • [27] Singh, M. K., Mahapatra, S., & Atreya, S. K. “Solar passive features in the vernacular architecture of North-East India”. Solar Energy, 85(9), (2011).
  • [28] Işık, A. B. “Cumalıkızık’ta yeniden hımış yapı”, 3.Bin Yılda Osmanlı Köyü: Cumalıkızık Sempozyumu, Bursa Yıldırım Belediyesi, Bursa Mimarlar Odası, Barış Manço Kültür Merkezi, Bursa, (2007).
  • [29] Abey, S. T., & Anand, K. B. “Embodied energy comparison of prefabricated and conventional building construction”. Journal of The Institution of Engineers (India): Series A, 100(4), 777-790, (2019).
  • [30] Anderson, J. E., Wulfhorst, G., & Lang, W. “Energy analysis of the built environment—A review and outlook”. Renewable and Sustainable Energy Reviews, 44, 149-158, (2015).
  • [31] Aydın, N. & Bıyıkoğlu, A. “Türkiye’de Konut Tipi Binaların Isıtma Yükü Altında Ömür Maliyet Analizi Yöntemi ile Optimum Yalıtım Kalınlıklarının Belirlenmesi” Politeknik Dergisi, 22 (4), 901-911, (2019).
  • [32] Allende, A. L., & Stephan, A. “Life cycle embodied, operational and mobility-related energy and greenhouse gas emissions analysis of a green development in Melbourne, Australia”. Applied Energy, 305, 117886, (2022).
  • [33] Gong, X., Nie, Z., Wang, Z., Cui, S., Gao, F., & Zuo, T. “Life Cycle Energy Consumption and Carbon Dioxide Emission of Residential Building Designs in Beijing”. Journal of Industrial Ecology, 16(4), 576–587, (2012).
  • [34] Embodied Carbon- “The ICE Database V3.0”. https://circularecology.com/embodied-carbon-footprint-database.html (2019, accessed 17 January 2022).
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Ayça Akkan Çavdar 0000-0002-3333-8943

Nilhan Vural 0000-0001-9248-6594

Early Pub Date September 3, 2023
Publication Date September 25, 2024
Submission Date January 20, 2023
Published in Issue Year 2024

Cite

APA Akkan Çavdar, A., & Vural, N. (2024). Analysis of the Embodied And Operational Energy of Wood-Based Prefabricated Panels Produced with Different Design Concepts According to Vernacular. Politeknik Dergisi, 27(4), 1491-1503. https://doi.org/10.2339/politeknik.1239942
AMA Akkan Çavdar A, Vural N. Analysis of the Embodied And Operational Energy of Wood-Based Prefabricated Panels Produced with Different Design Concepts According to Vernacular. Politeknik Dergisi. September 2024;27(4):1491-1503. doi:10.2339/politeknik.1239942
Chicago Akkan Çavdar, Ayça, and Nilhan Vural. “Analysis of the Embodied And Operational Energy of Wood-Based Prefabricated Panels Produced With Different Design Concepts According to Vernacular”. Politeknik Dergisi 27, no. 4 (September 2024): 1491-1503. https://doi.org/10.2339/politeknik.1239942.
EndNote Akkan Çavdar A, Vural N (September 1, 2024) Analysis of the Embodied And Operational Energy of Wood-Based Prefabricated Panels Produced with Different Design Concepts According to Vernacular. Politeknik Dergisi 27 4 1491–1503.
IEEE A. Akkan Çavdar and N. Vural, “Analysis of the Embodied And Operational Energy of Wood-Based Prefabricated Panels Produced with Different Design Concepts According to Vernacular”, Politeknik Dergisi, vol. 27, no. 4, pp. 1491–1503, 2024, doi: 10.2339/politeknik.1239942.
ISNAD Akkan Çavdar, Ayça - Vural, Nilhan. “Analysis of the Embodied And Operational Energy of Wood-Based Prefabricated Panels Produced With Different Design Concepts According to Vernacular”. Politeknik Dergisi 27/4 (September 2024), 1491-1503. https://doi.org/10.2339/politeknik.1239942.
JAMA Akkan Çavdar A, Vural N. Analysis of the Embodied And Operational Energy of Wood-Based Prefabricated Panels Produced with Different Design Concepts According to Vernacular. Politeknik Dergisi. 2024;27:1491–1503.
MLA Akkan Çavdar, Ayça and Nilhan Vural. “Analysis of the Embodied And Operational Energy of Wood-Based Prefabricated Panels Produced With Different Design Concepts According to Vernacular”. Politeknik Dergisi, vol. 27, no. 4, 2024, pp. 1491-03, doi:10.2339/politeknik.1239942.
Vancouver Akkan Çavdar A, Vural N. Analysis of the Embodied And Operational Energy of Wood-Based Prefabricated Panels Produced with Different Design Concepts According to Vernacular. Politeknik Dergisi. 2024;27(4):1491-503.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.