Ses Üstü Hava Alığında Sınır Tabaka – Şok Etkileşiminin Plenum Optimizasyonu ile Kontrolü
Year 2024,
, 1269 - 1279, 25.09.2024
Zeliha Türkkahraman
,
Muhammed Enes Özcan
,
Buğrahan Alabaş
Abstract
Gelişen dünyada özellikle askeri alanlarda süpersonik uçuşların önemi her geçen gün artmaktadır. Ses üstü uçuşlar farklı fiziki şartlara sahip olduğundan ses altı uçaklara göre hem gövde yapısında hem de motor kısmında farklı tasarımlar gerekmektedir. Bu çalışmalarda süpersonik uçuşlar için tasarlanmış jet motorlarının hava giriş performansları araştırılmaktadır. Yüksek basınç geri kazanımı ve düşük akış distorsiyonu hedefine uygun olarak hava giriş geometrisine plenum eklenmiş ve iki aşamalı optimizasyon süreci uygulanarak optimum plenum geometri tasarımı elde edilmiştir. Her bir optimizasyon adımında, plenum tasarımı ve tahliye sisteminin geometrik boyutlarındaki değişikliklerin PR (Basınç Geri Kazanımı) ve FD (Akış Bozulması) değerleri üzerindeki etkilerini belirlemek için hesaplamalı akışkanlar dinamiği analizleri yapılmıştır. Yapılan analiz sonucunda plenum eklentisi ve tahliye sisteminin hava giriş performansına olumlu etkisi olduğu görülmüştür. Optimizasyon süreçleri sonucunda ortaya çıkan yeni plenum tasarımı, hava emişinin performans değerlerini olumlu yönde etkilemiştir. Analiz sonuçları, optimize edilmiş geometride daha yüksek PR ve daha düşük FD sonuçları gösterdi.
References
- [1] Zhou, Y.Y., Zhao, YL., Zhao, YX. A., “Study on the Separation Length of Shock Wave/Turbulent Boundary Layer Interaction”, International Journal of Aerospace Engineering, No. 8323787, (2019).
- [2] Choe, Y., Kim, C., Kim, K., “Effects of Optimized Bleed System on
Supersonic Inlet Performance and Buzz”, Journal of Propulsion and
Power, 36(2): 1-12, (2020).
- [3] Liou, M.F., Benson, T., 2010. “Optimization of Bleed for Supersonic
Inlet”, 13th AIAA/ISSMO Multidisciplinary Analysis Optimization
Conference, Texas/USA, 13 – 15 Sept. 2010.
- [4] Younsi, J.S., Soltani, M.R., Abedi, M., Masdari, M., “Experimental
investigation into the effects of Mach number and boundary-layer
bleed on flow stability of a supersonic air intak”, Scientia Iranica, 27(3):
1197-1205, (2020).
- [5] Abedi, M., Askari, R., Younsi, J.S., Soltani, M.R., “Axisymmetric and
three-dimensional flow simulation of a mixed compression supersonic
air inlet”, Propulsion and Power Research, 9(1):. 51-61, (2020).
- [6] Gnani, F., Behtash, H.Z., Kontis, K., “Pseudo-shock waves and their
interactions in high-speed intakes”, Progress in Aerospace Sciences,
82: 36-56, (2016).
- [7] Lee, H.J., Lee, B.J., Kim, S.D., Jeung, I.S., “Flow Characteristics of Small-
Sized Supersonic Inlets”, Journal of Propulsion and Power, 27(2): 306-
318, (2011).
- [8] Younsi, J.S., Feshalami, B.F., Maadi, S.R., Soltani, M.R., “Boundary layer
suction for high-speed air intakes: A review”, Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering, 233(9): 3459-3481, (2018).
- [9] Ferrero, A., 2020., “Control of a Supersonic Inlet in Off-Design Conditions with Plasma Actuators and Bleed”, Aerospace, 7(32), (2020).
- [10] Suryanarayana, G.K., Dubey, R., “Performance Enhancement of a Ramjet Air Intake by Passive Bleed of Boundary Layer”, Journal of Spacecraft and Rockets, 56(3): 875-886, (2019).
- [11] Askari, R., Soltani, M.R., “Symmetric and Asymmetric Performance Investigation of a Diverterless Supersonic Inlet”, AIAA Journal, 60(4): 1-10, (2022).
- [12] Soltani, M.R., Daliri, A., Younsi, J.S., Farahani, M., “Effects of Bleed Position on the Stability of a Supersonic Inlet,”
Journal of Propulsion and Power, 32(5): 1-14, (2016).
- [13] Maadi, S.R., Younsi, J.S., “Effects of Bleed Type on the Performance of a Supersonic Intake”, Experimental
Thermal and Fluid Science, 132(9): 110568, (2022).
- [14] Suryanarayana, G.K., Singh, D.B., Surya, S., Jagadeesh, G., “Nonlinear damping model for supersonic air-intake buzz”, Aerospace Science and Technology, 126: 107567, (2022).
- [15] Abedi, M., Askari, R., Soltani, M.R., “Numerical simulation of inlet buzz”, Aerospace Science and Technology, 97: 105547, (2020).
- [16] Herrmann, D., Gülhan, A., “Experimental Analyses of Inlet Characteristics of an Airbreathing Missile with Boundary-Layer Bleed”, Journal of Propulsion and Power, 31(1): 170-179, (2015).
- [17] Titchener, N., Babinsky, H., “Shock Wave/Boundary-Layer Interaction Control Using a Combination of Vortex Generators and Bleed”, AIAA Journal, 51(5): 1221-1233, (2013).
- [18] Ryu, K.J., Lim, S., Song, D.J., “A Computational Study on the Effect of Angles of Attack on a Double-Cone Type Supersonic Inlet With Bleeding System”, Computers&Fluids, 50(1): 72-80, (2011).
- [19] Loth, E., Roos, F., Davis, D.O., Mace, J., Jaiman, R., White, S.R., Dutton, C., 2004. “Mesoflap and Bleed Flow Control for a Mach 2 Inlet,” 42nd AlAA Aerospace Sciences Meeting, Nevada, 5 – 8 January 2004.
- [20] Shih, T.S., Liou, W.W., Shabbir, A., Yang, Z., Zhu, J., “A new k-ϵ eddy viscosity model for high reynolds number turbulent flows,” Computers&Fluids, 24(3): 227-238, (1994).
- [21] ANSYS Fluent Theory Guide, ANSYS, Inc., 275 Technology Drive Canonsburg, PA 15317, November 2013.
- [22] Evran, S., Yıldır, S.Z., “NACA0009 ve NACA4415 Kanat Profillerinin Sayısal ve İstatistiksel Aerodinamik Performans Analizi”, Politeknik Dergisi, Early Access, (2023).
- [23] Selimli, S., “Yüzey Geometrisinin Mermi Aerodinamik Davranışları Üzerine Etkisinin Nümerik İncelenmesi”, Politeknik Dergisi, 24(1): 299-304, (2021).
- [24] Görgülü, Y.F., Özgür, M.A., Köse, R., “CFD Analysis of a Naca 0009 Aerofoil at a Low Reynolds Number”, Politeknik Dergisi, 24(3): 1237-1242, (2021).
- [25] Anderson, J.D., Fundamentals of aerodynamics. 6th Edition. McGraw-Hill Education, Boston, 2016.
- [26] Askari, R., Soltani, M.R., “Two and Three Dimensional Numerical Simulation of Supersonic Ramped Inlet”,
Scientia Iranica, 25(4): 2198-220, (2018).
- [27] Slater, J. W., Saunders, J.D., “Modeling of Fixed-Exit Porous Bleed Systems for Supersonic Inlets”, Journal of Propulsion and Power, 26(2), (2010).
- [28] Slater J.W., “Improvements in Modeling 90-degree Bleed Holes for Supersonic Inlets,” Journal of Propulsion and Power, 28(4), (2012).
- [29] Yuangyai, C., Nembhard, H.B., “Emerging Nanotechnologies for Manufacturing, Micro and Technologies. Chapter 8 – Desing of Experiments: A Key to Innovation in Nanotechnology,” 2010, 207 – 234. William Andrew.
Optimization of Plenum for Control of Boundary Layer-Shock Interaction in Supersonic Inlet
Year 2024,
, 1269 - 1279, 25.09.2024
Zeliha Türkkahraman
,
Muhammed Enes Özcan
,
Buğrahan Alabaş
Abstract
In the developing world, the importance of supersonic flights is increasing day by day, especially in military fields. Since supersonic flights have different physical conditions, different designs are required both in the fuselage structure and in the engine part compared to subsonic aircraft. In these studies, the air inlet performance of jet engines designed for supersonic flights is investigated. A plenum has been added to the air inlet geometry in line with the goal of low flow distortion and high pressure recovery. Then, the optimum plenum geometry design was obtained by applying a two-stage optimization process. In each optimization step, computational fluid dynamics analyses were performed to define the effects of the changes in the geometric dimensions of the plenum design and bleed system on the PR (Pressure Recovery) and FD (Flow Distortion) values. The outcome of the analysis showed that the addition of the plenum and the bleed system improved the performance of the air inlet. The new plenum design that emerged as a result of the optimization processes has positively affected the performance values of the air intake. Analysis results showed higher PR and lower FD results in optimized geometry.
References
- [1] Zhou, Y.Y., Zhao, YL., Zhao, YX. A., “Study on the Separation Length of Shock Wave/Turbulent Boundary Layer Interaction”, International Journal of Aerospace Engineering, No. 8323787, (2019).
- [2] Choe, Y., Kim, C., Kim, K., “Effects of Optimized Bleed System on
Supersonic Inlet Performance and Buzz”, Journal of Propulsion and
Power, 36(2): 1-12, (2020).
- [3] Liou, M.F., Benson, T., 2010. “Optimization of Bleed for Supersonic
Inlet”, 13th AIAA/ISSMO Multidisciplinary Analysis Optimization
Conference, Texas/USA, 13 – 15 Sept. 2010.
- [4] Younsi, J.S., Soltani, M.R., Abedi, M., Masdari, M., “Experimental
investigation into the effects of Mach number and boundary-layer
bleed on flow stability of a supersonic air intak”, Scientia Iranica, 27(3):
1197-1205, (2020).
- [5] Abedi, M., Askari, R., Younsi, J.S., Soltani, M.R., “Axisymmetric and
three-dimensional flow simulation of a mixed compression supersonic
air inlet”, Propulsion and Power Research, 9(1):. 51-61, (2020).
- [6] Gnani, F., Behtash, H.Z., Kontis, K., “Pseudo-shock waves and their
interactions in high-speed intakes”, Progress in Aerospace Sciences,
82: 36-56, (2016).
- [7] Lee, H.J., Lee, B.J., Kim, S.D., Jeung, I.S., “Flow Characteristics of Small-
Sized Supersonic Inlets”, Journal of Propulsion and Power, 27(2): 306-
318, (2011).
- [8] Younsi, J.S., Feshalami, B.F., Maadi, S.R., Soltani, M.R., “Boundary layer
suction for high-speed air intakes: A review”, Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering, 233(9): 3459-3481, (2018).
- [9] Ferrero, A., 2020., “Control of a Supersonic Inlet in Off-Design Conditions with Plasma Actuators and Bleed”, Aerospace, 7(32), (2020).
- [10] Suryanarayana, G.K., Dubey, R., “Performance Enhancement of a Ramjet Air Intake by Passive Bleed of Boundary Layer”, Journal of Spacecraft and Rockets, 56(3): 875-886, (2019).
- [11] Askari, R., Soltani, M.R., “Symmetric and Asymmetric Performance Investigation of a Diverterless Supersonic Inlet”, AIAA Journal, 60(4): 1-10, (2022).
- [12] Soltani, M.R., Daliri, A., Younsi, J.S., Farahani, M., “Effects of Bleed Position on the Stability of a Supersonic Inlet,”
Journal of Propulsion and Power, 32(5): 1-14, (2016).
- [13] Maadi, S.R., Younsi, J.S., “Effects of Bleed Type on the Performance of a Supersonic Intake”, Experimental
Thermal and Fluid Science, 132(9): 110568, (2022).
- [14] Suryanarayana, G.K., Singh, D.B., Surya, S., Jagadeesh, G., “Nonlinear damping model for supersonic air-intake buzz”, Aerospace Science and Technology, 126: 107567, (2022).
- [15] Abedi, M., Askari, R., Soltani, M.R., “Numerical simulation of inlet buzz”, Aerospace Science and Technology, 97: 105547, (2020).
- [16] Herrmann, D., Gülhan, A., “Experimental Analyses of Inlet Characteristics of an Airbreathing Missile with Boundary-Layer Bleed”, Journal of Propulsion and Power, 31(1): 170-179, (2015).
- [17] Titchener, N., Babinsky, H., “Shock Wave/Boundary-Layer Interaction Control Using a Combination of Vortex Generators and Bleed”, AIAA Journal, 51(5): 1221-1233, (2013).
- [18] Ryu, K.J., Lim, S., Song, D.J., “A Computational Study on the Effect of Angles of Attack on a Double-Cone Type Supersonic Inlet With Bleeding System”, Computers&Fluids, 50(1): 72-80, (2011).
- [19] Loth, E., Roos, F., Davis, D.O., Mace, J., Jaiman, R., White, S.R., Dutton, C., 2004. “Mesoflap and Bleed Flow Control for a Mach 2 Inlet,” 42nd AlAA Aerospace Sciences Meeting, Nevada, 5 – 8 January 2004.
- [20] Shih, T.S., Liou, W.W., Shabbir, A., Yang, Z., Zhu, J., “A new k-ϵ eddy viscosity model for high reynolds number turbulent flows,” Computers&Fluids, 24(3): 227-238, (1994).
- [21] ANSYS Fluent Theory Guide, ANSYS, Inc., 275 Technology Drive Canonsburg, PA 15317, November 2013.
- [22] Evran, S., Yıldır, S.Z., “NACA0009 ve NACA4415 Kanat Profillerinin Sayısal ve İstatistiksel Aerodinamik Performans Analizi”, Politeknik Dergisi, Early Access, (2023).
- [23] Selimli, S., “Yüzey Geometrisinin Mermi Aerodinamik Davranışları Üzerine Etkisinin Nümerik İncelenmesi”, Politeknik Dergisi, 24(1): 299-304, (2021).
- [24] Görgülü, Y.F., Özgür, M.A., Köse, R., “CFD Analysis of a Naca 0009 Aerofoil at a Low Reynolds Number”, Politeknik Dergisi, 24(3): 1237-1242, (2021).
- [25] Anderson, J.D., Fundamentals of aerodynamics. 6th Edition. McGraw-Hill Education, Boston, 2016.
- [26] Askari, R., Soltani, M.R., “Two and Three Dimensional Numerical Simulation of Supersonic Ramped Inlet”,
Scientia Iranica, 25(4): 2198-220, (2018).
- [27] Slater, J. W., Saunders, J.D., “Modeling of Fixed-Exit Porous Bleed Systems for Supersonic Inlets”, Journal of Propulsion and Power, 26(2), (2010).
- [28] Slater J.W., “Improvements in Modeling 90-degree Bleed Holes for Supersonic Inlets,” Journal of Propulsion and Power, 28(4), (2012).
- [29] Yuangyai, C., Nembhard, H.B., “Emerging Nanotechnologies for Manufacturing, Micro and Technologies. Chapter 8 – Desing of Experiments: A Key to Innovation in Nanotechnology,” 2010, 207 – 234. William Andrew.