Review
BibTex RIS Cite

EVALUATION OF FORMABILITY CRITERIA FOR SHEET METAL MATERIALS

Year 2024, , 1617 - 1631, 25.09.2024
https://doi.org/10.2339/politeknik.1392287
An Erratum to this article was published on December 12, 2024. https://dergipark.org.tr/en/pub/politeknik/issue/88539/1606270

Abstract

Predicting potential failures while manufacturing parts from sheet metal materials or knowing the forming limits of the sheet is extremely important in terms of economic design and manufacturing of molds, product quality, production rate and cost. On the other hand, the Forming Limit Diagram (FLD) is widely preferred to evaluate the deformation ability of sheet metals. Another important method used to measure the stretch forming ability of sheet materials is the Erichsen cupping test. In this test, the sheet metal clamped between the die and the blank holder is formed with a spherical punch, and the distance taken by the punch until crack formation begins on the sheet surface is defined as the Erichsen Index (EI). In this study, researches related to the effects of the factors arising from material properties and experimental conditions on FLD and EI values were compiled and evaluated. In general, it has been detected that the formability of sheet materials increases with the increase of the strain hardening exponent (n) and the temperature. In the literature, it was found out that the EI value got larger with the increase in sheet thickness and punch diameter, as well as with lubrication.

References

  • [1] Oh K. S., Oh K. H., Jang J. H., Kim D. J. and Han K. S., ‘’Design and analysis of New Test Method for evaluation of Sheet Metal formability’’, Journal of Materials Processing Technology, 211(4): 695-707, (2011).
  • [2] Kahraman F., Külekci M. K. and Küçük M., ‘’Experimental investigation of stretchability and Bendability Characterization of AISI 1020 Steel’’, Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 34(2): 135-140, (2019).
  • [3] Kotkunde N., Krishna G., Shenoy S. K., Gupta A. K. and Singh S.K., ‘’Experimental and theoretical investigation of forming limit diagram for Ti-6Al-4 V alloy at warm condition’’, International Journal of Material Forming, 10: 255-266, (2017).
  • [4] Keeler S. P., ‘’Determination of forming limits in automotive stampings’’, SAE Transactions, 74: 1-9, (1966).
  • [5] Goodwin G.M., ‘’Application of strain analysis to sheet metal forming problems in the press shop’’, Sae Transactions, 77(1): 380-387, (1968).
  • [6] Darabi R., Azodi H. D. and Bagherzadeh S., ‘’Bagherzadeh, Investigation into the effect of material properties and arrangement of each layer on the formability of bimetallic sheets’’ Journal of Manufacturing Processes, 29: 133-148, (2017).
  • [7] Hou Y., Myung D., Park J. K., Min J., Lee H. R., El-Aty A. A. and Lee M. G., ‘’A Review of Characterization and Modelling Approaches for Sheet Metal Forming of Lightweight Metallic Materials’’, Materials, 16(2): 836, (2023) [8] Anket O., Koruvatan T. ve Ay İ., ‘’Sac Malzemelerin Şekillendirilmesinde Şekillendirme Sınır Diyagramlarının Kullanımı’’, Politeknik Dergisi, 14(1): 39-47, (2011).
  • [9] Ozturk F., Dilmec M., Turkoz M., Ece R. E. and Halkaci H. S., ‘’Grid marking and measurement methods for sheet metal formability’’, 5th International Conference and Exhibition on Design and Production of MACHINES and DIES/MOLDS, Aydin, Turkey, (2009).
  • [10] Paul S. K., ‘’Controlling factors of forming limit curve: A Review’’, Advances in Industrial and Manufacturing Engineering, 2: 100033, (2021).
  • [11] ASTM E2218-02, ‘’Standard Test Method for Determining Forming Limit Curves’’, (2008).
  • [12] ISO Standard No. 12004-2, ‘’Metallic Materials-Sheet and Strip, Determination of Forming-Limit Curves-Part 2: Determination of Forming-Limit Curves in the Laboratory’’, (2008).
  • [13] Dilmec M., Halkaci H. S., Ozturk F. and Turkoz M., ‘’Detailed investigation of forming limit determination standards for aluminum alloys’’, Journal of Testing and Evaluation, 41(1): 10-21, (2013).
  • [14] Cao J., Li F., Ma X. and Sun Z., ‘’Tensile stress–strain behavior of metallic alloys’’, Transactions of Nonferrous Metals Society of China, 27(11): 2443-2453, (2017).
  • [15] Yoda R., Shibata K., Morimitsu T., Terada D. and Tsuji N., ‘’Formability of ultrafine-grained interstitial-free steel fabricated by accumulative roll-bonding and subsequent annealing’’, Scripta Materialia, 65(3): 175-178, (2011).
  • [16] Gao T., Liu Y., Chen P. and Wang Z., ‘’Analysis of bulging process of aluminum alloy by overlapping sheet metal and its formability’’, Transactions of Nonferrous Metals Society of China, 25(4): 1050-1055, (2015).
  • [17] Erhuy C. G., Yurci M. E. and Altan T., ‘’Determining the effective stress–effective strain curve of a high-strength low-alloy steel sheet from the viscous pressure bulge test’’, Sigma, 26(4): 281-300, (2008).
  • [18] Goud R. R., Prasad K. E. and Singh S. K., ‘’Formability limit diagrams of extra-deep-drawing steel at elevated temperatures’’, Procedia Materials Science, 6: 123-128, (2014).
  • [19] Wu D., Chen R. S. and Han E. H., ‘’Excellent room-temperature ductility and formability of rolled Mg–Gd–Zn Alloy Sheets’’, Journal of Alloys and Compounds, 509(6): 2856-2863, (2011).
  • [20] Lee W. B., To S., ‘’Computer modelling of the effect of rolling schedule on the plastic anisotropy of cold-rolled aluminium sheets’’, Journal of Materials Processing Technology, 48(1-4): 173-178, (1995).
  • [21] Narayanasamy R., Ravi chandran M. and Parthasarathi N. L., ‘’Effect of annealing on formability of aluminium grade 19000’’, Materials & Design, 29(8): 1633-1653, (2008).
  • [22] Hajizadeh K., Tajally M., Emadoddin E. and Borhani E., ‘’Study of texture, anisotropy and formability of Cartridge Brass Sheets’’, Journal of Alloys and Compounds, 588: 690-696, (2014).
  • [23] Djavanroodi F., Derogar A., ‘’Experimental and numerical evaluation of forming limit diagram for Ti6Al4V titanium and AL6061-T6 aluminum alloys sheets’’, Materials & Design, 31(10): 4866-4875, (2010).
  • [24] Jahromi S. A .J., Nazarboland A., Mansouri E. and Abbasi S., ‘’Investigation of formability of low carbon steel sheets by forming limit diagrams’’, Iranian Journal of Science and Technology, Transaction B: Engineering, 30: 377-385, (2006).
  • [25] Narayanasamy R., Narayanan C. S., ‘’Forming, fracture and wrinkling limit diagram for if steel sheets of different thickness’’, Materials & Design, 29(7): 1467-1475, (2008).
  • [26] Balod A. O., Aljarjees A. Y., ‘’The combining effect of changing forming path and heating effect during stretch forming process to enhance the formability of Al 6061 sheet’’, Journal of Mechanical Engineering Research and Developments, 44(3): 314-321, (2021).
  • [27] Özek C. ve Taşdemir V., “Alüminyum alaşımının derin çekilmesine sıcaklığın etkisinin deneysel ve sayısal olarak araştırılması”, Politeknik Dergisi, 21(1): 193-199, (2018).
  • [28] Tisza M., Kovács Z .P., ‘’New methods for predicting the formability of sheet metals’’, Journal of Production Processes and Systems, 6(1): 45-54, (2012).
  • [29] Şen N., Kurgan N., Karaağaç İ. ve Uluer O., ‘’Ilık Derin Çekme Prosesinde Yağlayıcı Etkisinin Şekillendirilebilirlik Açısından Deneysel Araştırılması’’, Politeknik Dergisi, 19(2): 185-193, (2016).
  • [30] Naka T., Torikai G., Hino R. and Yoshida F., ‘’The effects of temperature and forming speed on the forming limit diagram for type 5083 aluminum–magnesium alloy sheet’’, Journal of Materials Processing Technology, 113(1-3): 648-653, (2001).
  • [31] Fathi H., Emadoddin E., Mohammadian Semnani H. R. and Mohammad Sadeghi B., ‘’Effect of punch speed on the formability behavior of austenitic stainless steel type 304L’’, Metals and Materials International, 22(3): 397-406, (2016).
  • [32] Rodríguez-Martínez J. A., Pesci R. and Rusinek A., ‘’Experimental study on the martensitic transformation in AISI 304 steel sheets subjected to tension under wide ranges of strain rate at room temperature’’, Materials Science and Engineering: A, 528(18): 5974-5982, (2011).
  • [33] Fischer F. D., Reisner G., Werner E., Tanaka K., Cailletaud G. and Antretter T., ‘’A new view on transformation induced plasticity (TRIP)’’, International Journal of Plasticity, 16(7-8): 723-748, (2000).
  • [34] Cheng T. C., Lee R. S., ‘’The influence of grain size and strain rate effects on formability of aluminium alloy sheet at high-speed forming’’, Journal of Materials Processing Technology, 253: 134-159, (2018).
  • [35] Gau J. T., Principe C. and Wang J., ‘’An experimental study on size effects on flow stress and formability of aluminm and brass for microforming’’, Journal of Materials Processing Technology, 184(1-3): 42-46, (2007).
  • [36] Vollertsen F., Biermann D., Hansen H. N., Jawahir I. S. and Kuzman K., ‘’Size effects in manufacturing of metallic components’’, CIRP annals, 58(2): 566-587, (2009).
  • [37] Talapatra A., Choudhary V. R., Malhotra K., Vyas M., Jamal A. and Singhi M. K., ‘’Formability Characteristics of Different Sheet Metals By Erichsen Cupping Testing With NDT Methods’’, i-manager's Journal on Material Science, 1(1): 14-18, (2013).
  • [38] ISO Standard No. 20482, ‘’Metallic materials-Sheet and strip- Erichsen cupping test’’, (2013). [39] Kocańda A., Jasiński C., ‘’Extended evaluation of Erichsen cupping test results by means of laser speckle’’, Archives of Civil and Mechanical Engineering, 16(2): 211-216, (2016).
  • [40] Zhang M., Li L., Fu R. Y., Krizan D. and De Cooman B. C, ‘’Continuous cooling transformation diagrams and properties of micro-alloyed TRIP steels’’, Materials Science and Engineering: A, 438-440: 296-299, (2006).
  • [41] Tajally M., Emadoddin E., ‘’Mechanical and anisotropic behaviors of 7075 aluminum alloy sheets’’, Materials & Design, 32(3): 1594-1599, (2011).
  • [42] Salihu S. A., ‘’Assessment of Advanced High Strength Steels used in Auto Industry–A Review’’, Int. J. Sci. Res. Sci, 2(4): 565-571, (2016).
  • [43] Song H., Wang Z. J. and Gao T. J., ‘’Effect of high density electropulsing treatment on formability of TC4 titanium alloy sheet’’, Transactions of Nonferrous Metals Society of China, 17(1): 87-92, (2007).
  • [44] Irie T., Satoh S., Hashiguchi K., Takahashi I. and Hashimoto O., ‘’Metallurgical factors affecting the formability of cold-rolled high strength steel sheets’’, Transactions of the Iron and Steel Institute of Japan, 21(11): 793-801, (1981).
  • [45] Gül C., Albayrak S.,Çömez N. ve Durmuş H., “WE43 Magnezyum Alaşımının Soğuk Sprey Kaplama Yöntemi ile Al/Zn/Al2O3 ve Zn/Al2O3 Kaplanması ve Aşınma Davranışlarının İncelenmesi”, Politeknik Dergisi, 25(4): 1791-1798, (2022).
  • [46] Fan W. X., Bai Y., Li G. Y., Chang X. Y. and Hao H., ‘’Enhanced mechanical properties and formability of hot-rolled Mg–Zn–Mn alloy by Ca and Sm alloying’’, Transactions of Nonferrous Metals Society of China, 32(4): 1119-1132, (2022).
  • [47] Akbaş A. ve Zeren M., “Investigation of the effect of various Ca content on microstructure and mechanical properties of as-cast ZK60 Magnesium alloys”, Politeknik Dergisi, 26(3): 1061-1069, (2023).
  • [48] Ding H. L., Zhang P., Cheng G. P. and Kamado S., ‘’Effect of calcium addition on microstructure and texture modification of Mg rolled sheets’’, Transactions of Nonferrous Metals Society of China, 25(9): 2875-2883, (2015).
  • [49] Zhang T., Cui H., Cui X., Chen H., Zhao E., Chang L., Pan Y., Feng R., Zhai S. and Chai S., ‘’Effect of addition of small amounts of samarium on microstructural evolution and mechanical properties enhancement of an as-extruded ZK60 magnesium alloy sheet’’, Journal of Materials Research and Technology, 9(1): 133-141, (2020).
  • [50] Sekhar R. A., ‘’Determining the formability of AA5052 sheets in annealed and H32 condition’’, Journal of Physics: Conference Series, 1355: 012044, (2019).
  • [51] Bandyopadhyay K., Lee M. G., Panda S. K., Saha P. and J. Lee J., ‘’Formability assessment and failure prediction of laser welded dual phase steel blanks using anisotropic plastic properties’’, International Journal of Mechanical Sciences, 126: 203-221, (2017).
  • [52] Li J., Nayak S. S., Biro E., Panda S. K., Goodwin F. and Zhou Y., ‘’Effects of weld line position and geometry on the formability of laser welded high strength low alloy and dual-phase steel blanks’’, Materials & Design, 52: 757-766, (2013).
  • [53] Xia M. S., Kuntz M. L., Tian Z. L. and Zhou Y., ‘’Failure study on laser welds of dual phase steel in formability testing’’, Science and Technology of Welding and Joining, 13(4): 378-387, (2008).
  • [54] Bandyopadhyay K., Panda S. K., Saha P., Baltazar-Hernandez V. H. and Zhou Y. N., ‘’Microstructures and failure analyses of DP980 laser welded blanks in formability context’’, Materials Science and Engineering: A, 652: 250-263, (2016).
  • [55] Huan P. C., Wang X. N., Yang L., Zheng Z., Hu Z. R., Zhang M. and Chen C. J., ‘’Effect of Martensite Content on Failure Behavior of Laser Welded Dual-Phase Steel Joints During Deformation’’, Journal of Materials Engineering and Performance, 28(3): 1801-1809, (2019).
  • [56] Wang X. N., Sun Q., Zheng Z. and Di H. S., ‘’Microstructure and fracture behavior of laser welded joints of DP steels with different heat inputs’’, Materials Science and Engineering: A, 699: 18-25, (2017).
  • [57] Sekban D. M., Akterer S. M., Saray O., Ma Z. Y., and Purcek G., ‘’Formability of friction stir processed low carbon steels used in shipbuilding’’, Journal of Materials Science & Technology, 34(1): 237-244, (2018).
  • [58] Xue P., Xiao B. L., Wang W. G., Zhang Q., Wang D., Wang Q. Z. and Ma Z. Y., ‘’Achieving ultrafine dual-phase structure with superior mechanical property in friction stir processed plain low carbon steel’’, Materials Science and Engineering: A, 575: 30-34, (2013).
  • [59] Chino Y., Sassa K., Kamiya A. and Mabuchi M., ‘’Enhanced formability at elevated temperature of a cross-rolled magnesium alloy sheet’’ Materials Science and Engineering: A, 441(1-2): 349-356, (2006).
  • [60] Kim D. G., Son H. T., Kim D. W., Kim Y. H., Lee K. M., ‘’Effect of cross-roll angle on microstructures and mechanical properties during cross-roll rolling in AZ31 alloys’’, Materials Transactions, 52(12): 2274-2277, (2011).
  • [61] Zheng B., Gao X., Li M., Deng T., Huang Z., Zhou H. and Li D., ‘’Formability and Failure Mechanisms of Woven CF/PEEK Composite Sheet in Solid-State Thermoforming’’, Polymers, 11(6): 966, (2019).
  • [62] Luo X., Liu H., Kang L., Lin J., Liu Y., Zhang D., Li D. and Chen D., ‘’Stretch Formability of an AZ61 Alloy Plate Prepared by Multi-Pass Friction Stir Processing’’, Materials, 14(12): 3168, (2021).
  • [63] Huang K., Huang S., Yi Y., Dong F. and He H., ‘’Flow behavior and forming characteristics of 2A14 aluminum alloy at cryogenic temperatures’’, Journal of Alloys and Compounds, 902: 163821, (2022).
  • [64] Yuan S., Cheng W., Liu W. and Xu Y., ‘’A novel deep drawing process for aluminum alloy sheets at cryogenic temperatures’’, Journal of Materials Processing Technology, 284: 116743, (2020).
  • [65] Schneider R., Grant R. J., Schlosser J. M., Rimkus W., Radlmayr K., Grabner F. and Maier C., ‘’An investigation of the deep drawing behavior of automotive aluminum alloys at very low temperatures’’, Metallurgical and Materials Transactions A, 51: 1123-1133, (2020).
  • [66] Liu W., Cheng W. and Yuan S., ‘’Analyses on formability and flow stress of an Al-Cu-Mn alloy sheet under biaxial stress at cryogenic temperatures’’, International Journal of Mechanical Sciences, 195: 106266, (2021).
  • [67] Dong F., Huang S., Yi Y., Huang K., Jia Y., Yu W. and Zhao Z., ‘’Comparative study on the formability and microstructure evolution of different tempered Al-Cu-Li alloy sheets during room and cryogenic temperature forming process’’, Journal of Materials Research and Technology, 25: 3137-3150, (2023).
  • [68] Yuan S., Cheng W. and Liu W., ‘’Cryogenic formability of a solution-treated aluminum alloy sheet at low temperatures’’, Journal of Materials Processing Technology, 298: 117295, (2021).
  • [69] Kumar M., Sotirov N., Grabner F., Schneider R. and Mozdzen G., ‘’Cryogenic forming behaviour of AW-6016-T4 sheet’’, Transactions of Nonferrous Metals Society of China, 27(6): 1257-1263, (2017).
  • [70] Hamada A. S., Kisko A., Khosravifard A., Hassan M. A., Karjalainen L. P. and Porter D., ‘’Ductility and formability of three high-Mn TWIP steels in quasi-static and high-speed tensile and Erichsen tests’’, Materials Science and Engineering: A, 712: 255-265, (2018).
  • [71] Çakış Y., Özdemir A., Şeker U. ve Çiftçi İ., ‘’Al 1050 Sac Metal Malzemenin Çekilebilirliğinin İncelenmesi’’, Politeknik Dergisi, 26(2): 1001-1010, (2023).
  • [72] Parida A. K., Soren S., Jha R. N. and Sadhukhan S., ‘’Formability of Al-killed AISI 1040 Medium Carbon Steel for Cylindrical Cup Formation’’, ISIJ International, 56(4): 610-618, (2016).
  • [73] Kamikawa N., Morino H., ‘’Quantitative Analysis of Load–Displacement Curves in Erichsen Cupping Test for Low Carbon Steel Sheet’’, Metallurgical and Materials Transactions A, 50(11): 5023-5037, (2019).
  • [74] Timurkutluk B., Toros S., Onbilgin S. and Korkmaz H. G., ‘’Determination of formability characteristics of Crofer 22 APU sheets as interconnector for solid oxide fuel cells’’, International Journal of Hydrogen Energy, 43(31): 14638-14647, (2018).
  • [75] Reddy M. R. N., Theja M. S. and Tilak M. G., ‘’Modified Erichsen Cupping Test for Copper, Brass, Aluminium and Stainless Steel’’, The SIJ Transactions on Industrial, Financial & Business Management, 01(02): 52-57, (2013).
  • [76] Sener B. and Kayali E. S., ‘’Effectiveness of Stamping Lubricants in Erichsen Test’’, Key Engineering Materials, 549: 325-332, (2013).
  • [77] Ramadass R., Sambasivam S., Nagaraj V. V., ‘’Formability Studies on Titanium Grade 2 Sheet Using Erichsen Cupping Test’’, International Journal of Mechanical Engineering, 6(3): 667-675, (2021).
  • [78] Yoshimura H., Torikai S., Nishihara T., Nonishi T. and Inouchi N., ‘’Application of wheat flour lubricants to the press-forming process’’, Journal of Materials Processing Technology, 125: 375-378, (2002).

SAC METAL MALZEMELERİN ŞEKİLLENDİRİLEBİLİRLİK KRİTERLERİNİN DEĞERLENDİRİLMESİ

Year 2024, , 1617 - 1631, 25.09.2024
https://doi.org/10.2339/politeknik.1392287
An Erratum to this article was published on December 12, 2024. https://dergipark.org.tr/en/pub/politeknik/issue/88539/1606270

Abstract

Sac metal malzemelerden parçalar imal edilirken olası hataların öngörülmesi ya da sacın biçimlendirilebilme sınırlarının bilinmesi, kalıpların ekonomik tasarımı ve imalatı, ürün kalitesi, imalat hızı ve maliyet açısından son derece önemlidir. Diğer taraftan, sac metallerin deformasyon kabiliyetini değerlendirmek için Şekillendirme Sınır Diyagramı (ŞSD) yaygın olarak tercih edilmektedir. Sac malzemelerin gererek şekillendirme kabiliyetini ölçmek için faydalanılan bir diğer önemli yöntemlerden biri Erichsen şişirme testidir. Bu testte kalıp ile baskı plakası arasına sıkıştırılan sac küresel uçlu bir zımba ile şekillendirilir, sac yüzeyinde çatlak oluşumu başlayana kadar zımbanın aldığı mesafe Erichsen Sabiti (ES) olarak tanımlanır. Bu çalışmada, malzeme özelliklerinden ve deney şartlarından kaynaklanan faktörlerin ŞSD’ye ve ES değerine olan etkilerine yönelik yapılmış çalışmalar derlenmiş ve değerlendirilmiştir. Genel olarak pekleşme üsteli (n) değerinin büyümesi ve sıcaklığın yükselmesiyle sac malzemelerin şekillenebilirliğinin arttığı tespit edilmiştir. Literatürde sac kalınlığının ve zımba çapının artması ve ayrıca yağlayıcı kullanılması ile ES değerinin büyüdüğü saptanmıştır.

References

  • [1] Oh K. S., Oh K. H., Jang J. H., Kim D. J. and Han K. S., ‘’Design and analysis of New Test Method for evaluation of Sheet Metal formability’’, Journal of Materials Processing Technology, 211(4): 695-707, (2011).
  • [2] Kahraman F., Külekci M. K. and Küçük M., ‘’Experimental investigation of stretchability and Bendability Characterization of AISI 1020 Steel’’, Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 34(2): 135-140, (2019).
  • [3] Kotkunde N., Krishna G., Shenoy S. K., Gupta A. K. and Singh S.K., ‘’Experimental and theoretical investigation of forming limit diagram for Ti-6Al-4 V alloy at warm condition’’, International Journal of Material Forming, 10: 255-266, (2017).
  • [4] Keeler S. P., ‘’Determination of forming limits in automotive stampings’’, SAE Transactions, 74: 1-9, (1966).
  • [5] Goodwin G.M., ‘’Application of strain analysis to sheet metal forming problems in the press shop’’, Sae Transactions, 77(1): 380-387, (1968).
  • [6] Darabi R., Azodi H. D. and Bagherzadeh S., ‘’Bagherzadeh, Investigation into the effect of material properties and arrangement of each layer on the formability of bimetallic sheets’’ Journal of Manufacturing Processes, 29: 133-148, (2017).
  • [7] Hou Y., Myung D., Park J. K., Min J., Lee H. R., El-Aty A. A. and Lee M. G., ‘’A Review of Characterization and Modelling Approaches for Sheet Metal Forming of Lightweight Metallic Materials’’, Materials, 16(2): 836, (2023) [8] Anket O., Koruvatan T. ve Ay İ., ‘’Sac Malzemelerin Şekillendirilmesinde Şekillendirme Sınır Diyagramlarının Kullanımı’’, Politeknik Dergisi, 14(1): 39-47, (2011).
  • [9] Ozturk F., Dilmec M., Turkoz M., Ece R. E. and Halkaci H. S., ‘’Grid marking and measurement methods for sheet metal formability’’, 5th International Conference and Exhibition on Design and Production of MACHINES and DIES/MOLDS, Aydin, Turkey, (2009).
  • [10] Paul S. K., ‘’Controlling factors of forming limit curve: A Review’’, Advances in Industrial and Manufacturing Engineering, 2: 100033, (2021).
  • [11] ASTM E2218-02, ‘’Standard Test Method for Determining Forming Limit Curves’’, (2008).
  • [12] ISO Standard No. 12004-2, ‘’Metallic Materials-Sheet and Strip, Determination of Forming-Limit Curves-Part 2: Determination of Forming-Limit Curves in the Laboratory’’, (2008).
  • [13] Dilmec M., Halkaci H. S., Ozturk F. and Turkoz M., ‘’Detailed investigation of forming limit determination standards for aluminum alloys’’, Journal of Testing and Evaluation, 41(1): 10-21, (2013).
  • [14] Cao J., Li F., Ma X. and Sun Z., ‘’Tensile stress–strain behavior of metallic alloys’’, Transactions of Nonferrous Metals Society of China, 27(11): 2443-2453, (2017).
  • [15] Yoda R., Shibata K., Morimitsu T., Terada D. and Tsuji N., ‘’Formability of ultrafine-grained interstitial-free steel fabricated by accumulative roll-bonding and subsequent annealing’’, Scripta Materialia, 65(3): 175-178, (2011).
  • [16] Gao T., Liu Y., Chen P. and Wang Z., ‘’Analysis of bulging process of aluminum alloy by overlapping sheet metal and its formability’’, Transactions of Nonferrous Metals Society of China, 25(4): 1050-1055, (2015).
  • [17] Erhuy C. G., Yurci M. E. and Altan T., ‘’Determining the effective stress–effective strain curve of a high-strength low-alloy steel sheet from the viscous pressure bulge test’’, Sigma, 26(4): 281-300, (2008).
  • [18] Goud R. R., Prasad K. E. and Singh S. K., ‘’Formability limit diagrams of extra-deep-drawing steel at elevated temperatures’’, Procedia Materials Science, 6: 123-128, (2014).
  • [19] Wu D., Chen R. S. and Han E. H., ‘’Excellent room-temperature ductility and formability of rolled Mg–Gd–Zn Alloy Sheets’’, Journal of Alloys and Compounds, 509(6): 2856-2863, (2011).
  • [20] Lee W. B., To S., ‘’Computer modelling of the effect of rolling schedule on the plastic anisotropy of cold-rolled aluminium sheets’’, Journal of Materials Processing Technology, 48(1-4): 173-178, (1995).
  • [21] Narayanasamy R., Ravi chandran M. and Parthasarathi N. L., ‘’Effect of annealing on formability of aluminium grade 19000’’, Materials & Design, 29(8): 1633-1653, (2008).
  • [22] Hajizadeh K., Tajally M., Emadoddin E. and Borhani E., ‘’Study of texture, anisotropy and formability of Cartridge Brass Sheets’’, Journal of Alloys and Compounds, 588: 690-696, (2014).
  • [23] Djavanroodi F., Derogar A., ‘’Experimental and numerical evaluation of forming limit diagram for Ti6Al4V titanium and AL6061-T6 aluminum alloys sheets’’, Materials & Design, 31(10): 4866-4875, (2010).
  • [24] Jahromi S. A .J., Nazarboland A., Mansouri E. and Abbasi S., ‘’Investigation of formability of low carbon steel sheets by forming limit diagrams’’, Iranian Journal of Science and Technology, Transaction B: Engineering, 30: 377-385, (2006).
  • [25] Narayanasamy R., Narayanan C. S., ‘’Forming, fracture and wrinkling limit diagram for if steel sheets of different thickness’’, Materials & Design, 29(7): 1467-1475, (2008).
  • [26] Balod A. O., Aljarjees A. Y., ‘’The combining effect of changing forming path and heating effect during stretch forming process to enhance the formability of Al 6061 sheet’’, Journal of Mechanical Engineering Research and Developments, 44(3): 314-321, (2021).
  • [27] Özek C. ve Taşdemir V., “Alüminyum alaşımının derin çekilmesine sıcaklığın etkisinin deneysel ve sayısal olarak araştırılması”, Politeknik Dergisi, 21(1): 193-199, (2018).
  • [28] Tisza M., Kovács Z .P., ‘’New methods for predicting the formability of sheet metals’’, Journal of Production Processes and Systems, 6(1): 45-54, (2012).
  • [29] Şen N., Kurgan N., Karaağaç İ. ve Uluer O., ‘’Ilık Derin Çekme Prosesinde Yağlayıcı Etkisinin Şekillendirilebilirlik Açısından Deneysel Araştırılması’’, Politeknik Dergisi, 19(2): 185-193, (2016).
  • [30] Naka T., Torikai G., Hino R. and Yoshida F., ‘’The effects of temperature and forming speed on the forming limit diagram for type 5083 aluminum–magnesium alloy sheet’’, Journal of Materials Processing Technology, 113(1-3): 648-653, (2001).
  • [31] Fathi H., Emadoddin E., Mohammadian Semnani H. R. and Mohammad Sadeghi B., ‘’Effect of punch speed on the formability behavior of austenitic stainless steel type 304L’’, Metals and Materials International, 22(3): 397-406, (2016).
  • [32] Rodríguez-Martínez J. A., Pesci R. and Rusinek A., ‘’Experimental study on the martensitic transformation in AISI 304 steel sheets subjected to tension under wide ranges of strain rate at room temperature’’, Materials Science and Engineering: A, 528(18): 5974-5982, (2011).
  • [33] Fischer F. D., Reisner G., Werner E., Tanaka K., Cailletaud G. and Antretter T., ‘’A new view on transformation induced plasticity (TRIP)’’, International Journal of Plasticity, 16(7-8): 723-748, (2000).
  • [34] Cheng T. C., Lee R. S., ‘’The influence of grain size and strain rate effects on formability of aluminium alloy sheet at high-speed forming’’, Journal of Materials Processing Technology, 253: 134-159, (2018).
  • [35] Gau J. T., Principe C. and Wang J., ‘’An experimental study on size effects on flow stress and formability of aluminm and brass for microforming’’, Journal of Materials Processing Technology, 184(1-3): 42-46, (2007).
  • [36] Vollertsen F., Biermann D., Hansen H. N., Jawahir I. S. and Kuzman K., ‘’Size effects in manufacturing of metallic components’’, CIRP annals, 58(2): 566-587, (2009).
  • [37] Talapatra A., Choudhary V. R., Malhotra K., Vyas M., Jamal A. and Singhi M. K., ‘’Formability Characteristics of Different Sheet Metals By Erichsen Cupping Testing With NDT Methods’’, i-manager's Journal on Material Science, 1(1): 14-18, (2013).
  • [38] ISO Standard No. 20482, ‘’Metallic materials-Sheet and strip- Erichsen cupping test’’, (2013). [39] Kocańda A., Jasiński C., ‘’Extended evaluation of Erichsen cupping test results by means of laser speckle’’, Archives of Civil and Mechanical Engineering, 16(2): 211-216, (2016).
  • [40] Zhang M., Li L., Fu R. Y., Krizan D. and De Cooman B. C, ‘’Continuous cooling transformation diagrams and properties of micro-alloyed TRIP steels’’, Materials Science and Engineering: A, 438-440: 296-299, (2006).
  • [41] Tajally M., Emadoddin E., ‘’Mechanical and anisotropic behaviors of 7075 aluminum alloy sheets’’, Materials & Design, 32(3): 1594-1599, (2011).
  • [42] Salihu S. A., ‘’Assessment of Advanced High Strength Steels used in Auto Industry–A Review’’, Int. J. Sci. Res. Sci, 2(4): 565-571, (2016).
  • [43] Song H., Wang Z. J. and Gao T. J., ‘’Effect of high density electropulsing treatment on formability of TC4 titanium alloy sheet’’, Transactions of Nonferrous Metals Society of China, 17(1): 87-92, (2007).
  • [44] Irie T., Satoh S., Hashiguchi K., Takahashi I. and Hashimoto O., ‘’Metallurgical factors affecting the formability of cold-rolled high strength steel sheets’’, Transactions of the Iron and Steel Institute of Japan, 21(11): 793-801, (1981).
  • [45] Gül C., Albayrak S.,Çömez N. ve Durmuş H., “WE43 Magnezyum Alaşımının Soğuk Sprey Kaplama Yöntemi ile Al/Zn/Al2O3 ve Zn/Al2O3 Kaplanması ve Aşınma Davranışlarının İncelenmesi”, Politeknik Dergisi, 25(4): 1791-1798, (2022).
  • [46] Fan W. X., Bai Y., Li G. Y., Chang X. Y. and Hao H., ‘’Enhanced mechanical properties and formability of hot-rolled Mg–Zn–Mn alloy by Ca and Sm alloying’’, Transactions of Nonferrous Metals Society of China, 32(4): 1119-1132, (2022).
  • [47] Akbaş A. ve Zeren M., “Investigation of the effect of various Ca content on microstructure and mechanical properties of as-cast ZK60 Magnesium alloys”, Politeknik Dergisi, 26(3): 1061-1069, (2023).
  • [48] Ding H. L., Zhang P., Cheng G. P. and Kamado S., ‘’Effect of calcium addition on microstructure and texture modification of Mg rolled sheets’’, Transactions of Nonferrous Metals Society of China, 25(9): 2875-2883, (2015).
  • [49] Zhang T., Cui H., Cui X., Chen H., Zhao E., Chang L., Pan Y., Feng R., Zhai S. and Chai S., ‘’Effect of addition of small amounts of samarium on microstructural evolution and mechanical properties enhancement of an as-extruded ZK60 magnesium alloy sheet’’, Journal of Materials Research and Technology, 9(1): 133-141, (2020).
  • [50] Sekhar R. A., ‘’Determining the formability of AA5052 sheets in annealed and H32 condition’’, Journal of Physics: Conference Series, 1355: 012044, (2019).
  • [51] Bandyopadhyay K., Lee M. G., Panda S. K., Saha P. and J. Lee J., ‘’Formability assessment and failure prediction of laser welded dual phase steel blanks using anisotropic plastic properties’’, International Journal of Mechanical Sciences, 126: 203-221, (2017).
  • [52] Li J., Nayak S. S., Biro E., Panda S. K., Goodwin F. and Zhou Y., ‘’Effects of weld line position and geometry on the formability of laser welded high strength low alloy and dual-phase steel blanks’’, Materials & Design, 52: 757-766, (2013).
  • [53] Xia M. S., Kuntz M. L., Tian Z. L. and Zhou Y., ‘’Failure study on laser welds of dual phase steel in formability testing’’, Science and Technology of Welding and Joining, 13(4): 378-387, (2008).
  • [54] Bandyopadhyay K., Panda S. K., Saha P., Baltazar-Hernandez V. H. and Zhou Y. N., ‘’Microstructures and failure analyses of DP980 laser welded blanks in formability context’’, Materials Science and Engineering: A, 652: 250-263, (2016).
  • [55] Huan P. C., Wang X. N., Yang L., Zheng Z., Hu Z. R., Zhang M. and Chen C. J., ‘’Effect of Martensite Content on Failure Behavior of Laser Welded Dual-Phase Steel Joints During Deformation’’, Journal of Materials Engineering and Performance, 28(3): 1801-1809, (2019).
  • [56] Wang X. N., Sun Q., Zheng Z. and Di H. S., ‘’Microstructure and fracture behavior of laser welded joints of DP steels with different heat inputs’’, Materials Science and Engineering: A, 699: 18-25, (2017).
  • [57] Sekban D. M., Akterer S. M., Saray O., Ma Z. Y., and Purcek G., ‘’Formability of friction stir processed low carbon steels used in shipbuilding’’, Journal of Materials Science & Technology, 34(1): 237-244, (2018).
  • [58] Xue P., Xiao B. L., Wang W. G., Zhang Q., Wang D., Wang Q. Z. and Ma Z. Y., ‘’Achieving ultrafine dual-phase structure with superior mechanical property in friction stir processed plain low carbon steel’’, Materials Science and Engineering: A, 575: 30-34, (2013).
  • [59] Chino Y., Sassa K., Kamiya A. and Mabuchi M., ‘’Enhanced formability at elevated temperature of a cross-rolled magnesium alloy sheet’’ Materials Science and Engineering: A, 441(1-2): 349-356, (2006).
  • [60] Kim D. G., Son H. T., Kim D. W., Kim Y. H., Lee K. M., ‘’Effect of cross-roll angle on microstructures and mechanical properties during cross-roll rolling in AZ31 alloys’’, Materials Transactions, 52(12): 2274-2277, (2011).
  • [61] Zheng B., Gao X., Li M., Deng T., Huang Z., Zhou H. and Li D., ‘’Formability and Failure Mechanisms of Woven CF/PEEK Composite Sheet in Solid-State Thermoforming’’, Polymers, 11(6): 966, (2019).
  • [62] Luo X., Liu H., Kang L., Lin J., Liu Y., Zhang D., Li D. and Chen D., ‘’Stretch Formability of an AZ61 Alloy Plate Prepared by Multi-Pass Friction Stir Processing’’, Materials, 14(12): 3168, (2021).
  • [63] Huang K., Huang S., Yi Y., Dong F. and He H., ‘’Flow behavior and forming characteristics of 2A14 aluminum alloy at cryogenic temperatures’’, Journal of Alloys and Compounds, 902: 163821, (2022).
  • [64] Yuan S., Cheng W., Liu W. and Xu Y., ‘’A novel deep drawing process for aluminum alloy sheets at cryogenic temperatures’’, Journal of Materials Processing Technology, 284: 116743, (2020).
  • [65] Schneider R., Grant R. J., Schlosser J. M., Rimkus W., Radlmayr K., Grabner F. and Maier C., ‘’An investigation of the deep drawing behavior of automotive aluminum alloys at very low temperatures’’, Metallurgical and Materials Transactions A, 51: 1123-1133, (2020).
  • [66] Liu W., Cheng W. and Yuan S., ‘’Analyses on formability and flow stress of an Al-Cu-Mn alloy sheet under biaxial stress at cryogenic temperatures’’, International Journal of Mechanical Sciences, 195: 106266, (2021).
  • [67] Dong F., Huang S., Yi Y., Huang K., Jia Y., Yu W. and Zhao Z., ‘’Comparative study on the formability and microstructure evolution of different tempered Al-Cu-Li alloy sheets during room and cryogenic temperature forming process’’, Journal of Materials Research and Technology, 25: 3137-3150, (2023).
  • [68] Yuan S., Cheng W. and Liu W., ‘’Cryogenic formability of a solution-treated aluminum alloy sheet at low temperatures’’, Journal of Materials Processing Technology, 298: 117295, (2021).
  • [69] Kumar M., Sotirov N., Grabner F., Schneider R. and Mozdzen G., ‘’Cryogenic forming behaviour of AW-6016-T4 sheet’’, Transactions of Nonferrous Metals Society of China, 27(6): 1257-1263, (2017).
  • [70] Hamada A. S., Kisko A., Khosravifard A., Hassan M. A., Karjalainen L. P. and Porter D., ‘’Ductility and formability of three high-Mn TWIP steels in quasi-static and high-speed tensile and Erichsen tests’’, Materials Science and Engineering: A, 712: 255-265, (2018).
  • [71] Çakış Y., Özdemir A., Şeker U. ve Çiftçi İ., ‘’Al 1050 Sac Metal Malzemenin Çekilebilirliğinin İncelenmesi’’, Politeknik Dergisi, 26(2): 1001-1010, (2023).
  • [72] Parida A. K., Soren S., Jha R. N. and Sadhukhan S., ‘’Formability of Al-killed AISI 1040 Medium Carbon Steel for Cylindrical Cup Formation’’, ISIJ International, 56(4): 610-618, (2016).
  • [73] Kamikawa N., Morino H., ‘’Quantitative Analysis of Load–Displacement Curves in Erichsen Cupping Test for Low Carbon Steel Sheet’’, Metallurgical and Materials Transactions A, 50(11): 5023-5037, (2019).
  • [74] Timurkutluk B., Toros S., Onbilgin S. and Korkmaz H. G., ‘’Determination of formability characteristics of Crofer 22 APU sheets as interconnector for solid oxide fuel cells’’, International Journal of Hydrogen Energy, 43(31): 14638-14647, (2018).
  • [75] Reddy M. R. N., Theja M. S. and Tilak M. G., ‘’Modified Erichsen Cupping Test for Copper, Brass, Aluminium and Stainless Steel’’, The SIJ Transactions on Industrial, Financial & Business Management, 01(02): 52-57, (2013).
  • [76] Sener B. and Kayali E. S., ‘’Effectiveness of Stamping Lubricants in Erichsen Test’’, Key Engineering Materials, 549: 325-332, (2013).
  • [77] Ramadass R., Sambasivam S., Nagaraj V. V., ‘’Formability Studies on Titanium Grade 2 Sheet Using Erichsen Cupping Test’’, International Journal of Mechanical Engineering, 6(3): 667-675, (2021).
  • [78] Yoshimura H., Torikai S., Nishihara T., Nonishi T. and Inouchi N., ‘’Application of wheat flour lubricants to the press-forming process’’, Journal of Materials Processing Technology, 125: 375-378, (2002).
There are 76 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering (Other)
Journal Section Review Article
Authors

Fatih Civelek 0000-0001-6397-3836

Ahmet Özdemir 0000-0001-9919-8149

Early Pub Date March 20, 2024
Publication Date September 25, 2024
Submission Date November 17, 2023
Acceptance Date December 20, 2023
Published in Issue Year 2024

Cite

APA Civelek, F., & Özdemir, A. (2024). SAC METAL MALZEMELERİN ŞEKİLLENDİRİLEBİLİRLİK KRİTERLERİNİN DEĞERLENDİRİLMESİ. Politeknik Dergisi, 27(4), 1617-1631. https://doi.org/10.2339/politeknik.1392287
AMA Civelek F, Özdemir A. SAC METAL MALZEMELERİN ŞEKİLLENDİRİLEBİLİRLİK KRİTERLERİNİN DEĞERLENDİRİLMESİ. Politeknik Dergisi. September 2024;27(4):1617-1631. doi:10.2339/politeknik.1392287
Chicago Civelek, Fatih, and Ahmet Özdemir. “SAC METAL MALZEMELERİN ŞEKİLLENDİRİLEBİLİRLİK KRİTERLERİNİN DEĞERLENDİRİLMESİ”. Politeknik Dergisi 27, no. 4 (September 2024): 1617-31. https://doi.org/10.2339/politeknik.1392287.
EndNote Civelek F, Özdemir A (September 1, 2024) SAC METAL MALZEMELERİN ŞEKİLLENDİRİLEBİLİRLİK KRİTERLERİNİN DEĞERLENDİRİLMESİ. Politeknik Dergisi 27 4 1617–1631.
IEEE F. Civelek and A. Özdemir, “SAC METAL MALZEMELERİN ŞEKİLLENDİRİLEBİLİRLİK KRİTERLERİNİN DEĞERLENDİRİLMESİ”, Politeknik Dergisi, vol. 27, no. 4, pp. 1617–1631, 2024, doi: 10.2339/politeknik.1392287.
ISNAD Civelek, Fatih - Özdemir, Ahmet. “SAC METAL MALZEMELERİN ŞEKİLLENDİRİLEBİLİRLİK KRİTERLERİNİN DEĞERLENDİRİLMESİ”. Politeknik Dergisi 27/4 (September 2024), 1617-1631. https://doi.org/10.2339/politeknik.1392287.
JAMA Civelek F, Özdemir A. SAC METAL MALZEMELERİN ŞEKİLLENDİRİLEBİLİRLİK KRİTERLERİNİN DEĞERLENDİRİLMESİ. Politeknik Dergisi. 2024;27:1617–1631.
MLA Civelek, Fatih and Ahmet Özdemir. “SAC METAL MALZEMELERİN ŞEKİLLENDİRİLEBİLİRLİK KRİTERLERİNİN DEĞERLENDİRİLMESİ”. Politeknik Dergisi, vol. 27, no. 4, 2024, pp. 1617-31, doi:10.2339/politeknik.1392287.
Vancouver Civelek F, Özdemir A. SAC METAL MALZEMELERİN ŞEKİLLENDİRİLEBİLİRLİK KRİTERLERİNİN DEĞERLENDİRİLMESİ. Politeknik Dergisi. 2024;27(4):1617-31.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.