Research Article
BibTex RIS Cite

Driving a Symmetric Permanent Magnet Synchronous Six-Phase Machine with Consecutive Three Phases

Year 2024, , 2139 - 2149, 12.12.2024
https://doi.org/10.2339/politeknik.1406553

Abstract

This paper investigates a driving method for a Permanent Magnet (PM) Synchronous six-phase machine by using its consecutive three phases. The torque of PM synchronous machine is the division of instantaneous power (I-power) of the machine to the rotor speed. The I-power of a machine gives information about the torque. The torque output of a PM synchronous machine can be predicted by looking at the I-power. This study investigates the torque of a PM synchronous six-phase machine by exciting its phase coils for the combination of conventional three-phase, double conventional three-phase, consecutive three phases of six-phase machine and double consecutive three phases of six-phase machine. This paper also investigates the way of driving a six-phase machine using the balanced three-phase supply. Firstly, analytical studies have been done for these exciting combinations. These analytical results indicate that symmetric six-phase machine can be driven using these combinations. Secondly, a PM synchronous six-phase machine has been designed in a finite element analysis (FEA) software. Lastly, that designed six-phase machine excited with these combinations to observe the torque wave form of the machine. As a result of this study, a symmetric six-phase machine can be run by its consecutive three phases without torque ripple.

References

  • [1] A. Mohammadpour and L. Parsa, “Global fault-tolerant control technique for multiphase permanent-magnet machines,” IEEE Trans Ind Appl, 51(1): 178–186, (2015).
  • [2] M. Slunjski, O. Dordevic, M. Jones, and E. Levi, “Symmetrical/Asymmetrical Winding Reconfiguration in Multiphase Machines,” IEEE Access, 8: 12835–12844, (2020).
  • [3] E. Levi, M. Jones, and S. N. Vukosavic, “A series-connected two-motor six-phase drive with induction and permanent magnet machines,” IEEE Transactions on Energy Conversion, 21(1): 121–129, (2006).
  • [4] K. Wang, Z. Q. Zhu, and G. Ombach, “Torque enhancement of surface-mounted permanent magnet machine using third-order harmonic,” IEEE Trans Magn, 50(3): 104–113, (2014).
  • [5] K. Wang, Z. Y. Gu, C. Liu, and Z. Q. Zhu, “Design and Analysis of a Five-Phase SPM Machine Considering Third Harmonic Current Injection,” IEEE Transactions on Energy Conversion, 33(3): 1108–1117, (2018).
  • [6] F. Scuiller, F. Becker, H. Zahr, and E. Semail, “Design of a Bi-Harmonic 7-Phase PM Machine with Tooth-Concentrated Winding,” IEEE Transactions on Energy Conversion, 35(3): 1567–1576, (2020).
  • [7] F. Scuiller, “Magnet Shape Optimization to Reduce Pulsating Torque for a Five-Phase Permanent-Magnet Low-Speed Machine,” IEEE Trans Magn, 50(4): (2014).
  • [8] Y. Kali, J. Rodas, J. Doval-Gandoy, M. Ayala, and O. Gonzalez, “Enhanced Reaching-Law-Based Discrete-Time Terminal Sliding Mode Current Control of a Six-Phase Induction Motor,” Machines, 11(1), (2023).
  • [9] J. Serra, I. Jlassi, and A. J. M. Cardoso, “A Computationally Efficient Model Predictive Control of Six-Phase Induction Machines Based on Deadbeat Control,” Machines, 9(12) (2021).
  • [10]M. Slunjski, O. Stiscia, M. Jones, and E. Levi, “General Torque Enhancement Approach for a Nine-Phase Surface PMSM with Built-In Fault Tolerance,” IEEE Transactions on Industrial Electronics, 68(8): 6412–6423, (2021).
  • [11]K. Wang, Z. Q. Zhu, and G. Ombach, “Torque improvement of five-phase surface-mounted permanent magnet machine using third-order harmonic,” IEEE Transactions on Energy Conversion, 29(3): 735–747, (2014).
  • [12]Z. Y. Gu, K. Wang, Z. Q. Zhu, Z. Z. Wu, C. Liu, and R. W. Cao, “Torque improvement in five-phase unequal tooth SPM machine by injecting third harmonic current,” IEEE Trans Veh Technol, 67(1): 206–215, (2018).
  • [13]K. Wang, J. Y. Zhang, Z. Y. Gu, H. Y. Sun, and Z. Q. Zhu, “Torque Improvement of Dual Three-Phase Permanent Magnet Machine Using Zero Sequence Components,” IEEE Trans Magn, 3(11): (2017).
  • [14]K. Wang, Z. Q. Zhu, G. Ombach, and W. Chlebosz, “Average torque improvement of interior permanent-magnet machine using third harmonic in rotor shape,” IEEE Transactions on Industrial Electronics, 61(9): 5047–5057 (2014).
  • [15]E. Levi, “Multiphase Electric Machines for Variable-Speed Applications,” IEEE Transactions on Industrial Electronics, 55(5):1 893–1909, (2008).
  • [16]K. Wang, Z. Q. Zhu, Y. Ren, and G. Ombach, “Torque Improvement of Dual Three-Phase Permanent-Magnet Machine with Third-Harmonic Current Injection,” IEEE Transactions on Industrial Electronics, 62(11): 6833–6844, (2015).
  • [17]S. Dwari and L. Parsa, “Fault-tolerant control of five-phase permanent-magnet motors with trapezoidal back EMF,” IEEE Transactions on Industrial Electronics, 58(2): 476–485, (2011).
  • [18] Z. Zhang, Y. Wu, H. Su and Q. Sun, "Research on Open-circuit Fault Tolerant Control of Six-phase Permanent Magnet Synchronous Machine Based on Fifth Harmonic Current Injection," CES Transactions on Electrical Machines and Systems, 6(3): 306-314, (2022).
  • [19]K. Laadjal, J. Serra, and A. J. M. Cardoso, “Stator Faults Detection in Asymmetrical Six-Phase Induction Motor Drives with Single and Dual Isolated Neutral Point, Adopting a Model Predictive Controller,” Machines, 11(2), (2023).
  • [20]M. I. Abdelwanis, E. M. Rashad, I. B. M. Taha, and F. F. Selim, “Implementation and control of six-phase induction motor driven by a three-phase supply,” Energies (Basel), 14(22), (2021).
  • [21]E. Levi, M. Jones, and S. N. Vukosavic, “A series-connected two-motor six-phase drive with induction and permanent magnet machines,” IEEE Transactions on Energy Conversion, 21(1)121–129, (2006).
  • [22]K. Wang, Z. Q. Zhu, and G. Ombach, “Torque improvement of five-phase surface-mounted permanent magnet machine using third-order harmonic,” IEEE Transactions on Energy Conversion, 29(3) 735–747, (2014).
  • [23]M. I. Abdelwanis, E. M. Rashad, I. B. M. Taha, and F. F. Selim, “Implementation and control of six-phase induction motor driven by a three-phase supply,” Energies (Basel), 14(22), (2021).
  • [24]S. Dwari and L. Parsa, “Fault-tolerant control of five-phase permanent-magnet motors with trapezoidal back EMF,” IEEE Transactions on Industrial Electronics, 58(2): 476–485, (2011).
  • [25]K. Wang, Z. Q. Zhu, Y. Ren, and G. Ombach, “Torque Improvement of Dual Three-Phase Permanent-Magnet Machine with Third-Harmonic Current Injection,” IEEE Transactions on Industrial Electronics, 62(11) 6833–6844, (2015).
  • [26]H. S. Che and W. P. Hew, “Dual three-phase operation of single neutral symmetrical six-phase machine for improved performance,” IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, Institute of Electrical and Electronics Engineers Inc., 1176–1181 (2015).
  • [27]S. AKKAYA OY, S. ARSLAN, and O. GÜRDAL, “Finite Element Analysis of the Inductance and Magnetic Field in the Permanent Magnet Spherical Motor,” Politeknik Dergisi, 23(4)1387–1394, (2020).
  • [28]F. BATTAL, “Yalıtım Transformatörlerinde Ara-Harmoniklerin Transformatör Nüve Titreşimi Üzerine Etkisi,” Journal of Polytechnic, (2023).
  • [29]A. DALCALI, E. KURT, E. ÇELİK, and N. ÖZTÜRK, “Cogging Torque Minimization Using Skewed and Separated Magnet Geometries,” Politeknik Dergisi, 23(1) 223–230, (2020).
  • [30]N. Bianchi, M. D. Pré, G. Grezzani, and S. Bolognani, “Design considerations on fractional - Slot fault - Tolerant synchronous motors,” IEEE International Conference on Electric Machines and Drives, IEEE Computer Society, 902–909, (2005).
  • [31]T. GÜNDOĞDU, “Kalıcı Mıknatıslı Vernier Makinaların Parametrik Analizi,” Journal of Polytechnic, (2023).

Simetrik Sürekli Mıknatıslı Senkron Altı Fazlı bir Makinenin Ardışık Üç Fazının Kullanılarak Sürülmesi

Year 2024, , 2139 - 2149, 12.12.2024
https://doi.org/10.2339/politeknik.1406553

Abstract

Bu makale, sürekli mıknatıslı (PM) senkron altı fazlı bir makinenin ardışık üç fazının kullanılarak sürülmesi yöntemini araştırmaktadır. PM senkron makinenin torku, makinenin anlık gücünün (I-power) rotor hızına bölünmesidir. Bir makinede I-power tork hakkında bilgi verir. PM senkron makinenin tork çıkışı I-power dalga formuna bakılarak tahmin edilebilir. Bu çalışma, PM senkron altı fazlı bir makinenin, iki üç fazlı makinenin enerjilendirilmesi, altı faz dengeli kaynak ile enerjilendirilmesi ve bunlara ek olarak ardışık üç fazdan oluşan makinelerin enerjilendirilmesinin torka etkisini araştırmaktadır.Bu makale aynı zamanda dengeli üç fazlı beslemeyi kullanarak altı fazlı bir makineyi çalıştırılmasını da araştırıyor. Bu enerjilendirme durumları için öncelikle matematiksel analizler yapıldı. Bu analitik sonuçlar, simetrik altı fazlı makinenin bu kombinasyonlar kullanılarak sürülebileceğini göstermektedir. İkinci olarak, sonlu elemanlar analizi (FEA) yazılımında PM senkron altı fazlı bir makine tasarlanmıştır. Son olarak tasarlanan altı fazlı makine bu kombinasyonlarla enerjilendirilerek makinenin tork dalga formu gözlemlendi. Bu çalışmanın sonucunda, simetrik altı fazlı bir makinenin ardışık üç fazı ile tork dalgalanması olmadan çalıştırılabileceği görülmüştür.

References

  • [1] A. Mohammadpour and L. Parsa, “Global fault-tolerant control technique for multiphase permanent-magnet machines,” IEEE Trans Ind Appl, 51(1): 178–186, (2015).
  • [2] M. Slunjski, O. Dordevic, M. Jones, and E. Levi, “Symmetrical/Asymmetrical Winding Reconfiguration in Multiphase Machines,” IEEE Access, 8: 12835–12844, (2020).
  • [3] E. Levi, M. Jones, and S. N. Vukosavic, “A series-connected two-motor six-phase drive with induction and permanent magnet machines,” IEEE Transactions on Energy Conversion, 21(1): 121–129, (2006).
  • [4] K. Wang, Z. Q. Zhu, and G. Ombach, “Torque enhancement of surface-mounted permanent magnet machine using third-order harmonic,” IEEE Trans Magn, 50(3): 104–113, (2014).
  • [5] K. Wang, Z. Y. Gu, C. Liu, and Z. Q. Zhu, “Design and Analysis of a Five-Phase SPM Machine Considering Third Harmonic Current Injection,” IEEE Transactions on Energy Conversion, 33(3): 1108–1117, (2018).
  • [6] F. Scuiller, F. Becker, H. Zahr, and E. Semail, “Design of a Bi-Harmonic 7-Phase PM Machine with Tooth-Concentrated Winding,” IEEE Transactions on Energy Conversion, 35(3): 1567–1576, (2020).
  • [7] F. Scuiller, “Magnet Shape Optimization to Reduce Pulsating Torque for a Five-Phase Permanent-Magnet Low-Speed Machine,” IEEE Trans Magn, 50(4): (2014).
  • [8] Y. Kali, J. Rodas, J. Doval-Gandoy, M. Ayala, and O. Gonzalez, “Enhanced Reaching-Law-Based Discrete-Time Terminal Sliding Mode Current Control of a Six-Phase Induction Motor,” Machines, 11(1), (2023).
  • [9] J. Serra, I. Jlassi, and A. J. M. Cardoso, “A Computationally Efficient Model Predictive Control of Six-Phase Induction Machines Based on Deadbeat Control,” Machines, 9(12) (2021).
  • [10]M. Slunjski, O. Stiscia, M. Jones, and E. Levi, “General Torque Enhancement Approach for a Nine-Phase Surface PMSM with Built-In Fault Tolerance,” IEEE Transactions on Industrial Electronics, 68(8): 6412–6423, (2021).
  • [11]K. Wang, Z. Q. Zhu, and G. Ombach, “Torque improvement of five-phase surface-mounted permanent magnet machine using third-order harmonic,” IEEE Transactions on Energy Conversion, 29(3): 735–747, (2014).
  • [12]Z. Y. Gu, K. Wang, Z. Q. Zhu, Z. Z. Wu, C. Liu, and R. W. Cao, “Torque improvement in five-phase unequal tooth SPM machine by injecting third harmonic current,” IEEE Trans Veh Technol, 67(1): 206–215, (2018).
  • [13]K. Wang, J. Y. Zhang, Z. Y. Gu, H. Y. Sun, and Z. Q. Zhu, “Torque Improvement of Dual Three-Phase Permanent Magnet Machine Using Zero Sequence Components,” IEEE Trans Magn, 3(11): (2017).
  • [14]K. Wang, Z. Q. Zhu, G. Ombach, and W. Chlebosz, “Average torque improvement of interior permanent-magnet machine using third harmonic in rotor shape,” IEEE Transactions on Industrial Electronics, 61(9): 5047–5057 (2014).
  • [15]E. Levi, “Multiphase Electric Machines for Variable-Speed Applications,” IEEE Transactions on Industrial Electronics, 55(5):1 893–1909, (2008).
  • [16]K. Wang, Z. Q. Zhu, Y. Ren, and G. Ombach, “Torque Improvement of Dual Three-Phase Permanent-Magnet Machine with Third-Harmonic Current Injection,” IEEE Transactions on Industrial Electronics, 62(11): 6833–6844, (2015).
  • [17]S. Dwari and L. Parsa, “Fault-tolerant control of five-phase permanent-magnet motors with trapezoidal back EMF,” IEEE Transactions on Industrial Electronics, 58(2): 476–485, (2011).
  • [18] Z. Zhang, Y. Wu, H. Su and Q. Sun, "Research on Open-circuit Fault Tolerant Control of Six-phase Permanent Magnet Synchronous Machine Based on Fifth Harmonic Current Injection," CES Transactions on Electrical Machines and Systems, 6(3): 306-314, (2022).
  • [19]K. Laadjal, J. Serra, and A. J. M. Cardoso, “Stator Faults Detection in Asymmetrical Six-Phase Induction Motor Drives with Single and Dual Isolated Neutral Point, Adopting a Model Predictive Controller,” Machines, 11(2), (2023).
  • [20]M. I. Abdelwanis, E. M. Rashad, I. B. M. Taha, and F. F. Selim, “Implementation and control of six-phase induction motor driven by a three-phase supply,” Energies (Basel), 14(22), (2021).
  • [21]E. Levi, M. Jones, and S. N. Vukosavic, “A series-connected two-motor six-phase drive with induction and permanent magnet machines,” IEEE Transactions on Energy Conversion, 21(1)121–129, (2006).
  • [22]K. Wang, Z. Q. Zhu, and G. Ombach, “Torque improvement of five-phase surface-mounted permanent magnet machine using third-order harmonic,” IEEE Transactions on Energy Conversion, 29(3) 735–747, (2014).
  • [23]M. I. Abdelwanis, E. M. Rashad, I. B. M. Taha, and F. F. Selim, “Implementation and control of six-phase induction motor driven by a three-phase supply,” Energies (Basel), 14(22), (2021).
  • [24]S. Dwari and L. Parsa, “Fault-tolerant control of five-phase permanent-magnet motors with trapezoidal back EMF,” IEEE Transactions on Industrial Electronics, 58(2): 476–485, (2011).
  • [25]K. Wang, Z. Q. Zhu, Y. Ren, and G. Ombach, “Torque Improvement of Dual Three-Phase Permanent-Magnet Machine with Third-Harmonic Current Injection,” IEEE Transactions on Industrial Electronics, 62(11) 6833–6844, (2015).
  • [26]H. S. Che and W. P. Hew, “Dual three-phase operation of single neutral symmetrical six-phase machine for improved performance,” IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, Institute of Electrical and Electronics Engineers Inc., 1176–1181 (2015).
  • [27]S. AKKAYA OY, S. ARSLAN, and O. GÜRDAL, “Finite Element Analysis of the Inductance and Magnetic Field in the Permanent Magnet Spherical Motor,” Politeknik Dergisi, 23(4)1387–1394, (2020).
  • [28]F. BATTAL, “Yalıtım Transformatörlerinde Ara-Harmoniklerin Transformatör Nüve Titreşimi Üzerine Etkisi,” Journal of Polytechnic, (2023).
  • [29]A. DALCALI, E. KURT, E. ÇELİK, and N. ÖZTÜRK, “Cogging Torque Minimization Using Skewed and Separated Magnet Geometries,” Politeknik Dergisi, 23(1) 223–230, (2020).
  • [30]N. Bianchi, M. D. Pré, G. Grezzani, and S. Bolognani, “Design considerations on fractional - Slot fault - Tolerant synchronous motors,” IEEE International Conference on Electric Machines and Drives, IEEE Computer Society, 902–909, (2005).
  • [31]T. GÜNDOĞDU, “Kalıcı Mıknatıslı Vernier Makinaların Parametrik Analizi,” Journal of Polytechnic, (2023).
There are 31 citations in total.

Details

Primary Language English
Subjects Electrical Machines and Drives
Journal Section Research Article
Authors

Ali Akay 0000-0001-7243-9395

Early Pub Date March 8, 2024
Publication Date December 12, 2024
Submission Date December 18, 2023
Acceptance Date February 12, 2024
Published in Issue Year 2024

Cite

APA Akay, A. (2024). Driving a Symmetric Permanent Magnet Synchronous Six-Phase Machine with Consecutive Three Phases. Politeknik Dergisi, 27(6), 2139-2149. https://doi.org/10.2339/politeknik.1406553
AMA Akay A. Driving a Symmetric Permanent Magnet Synchronous Six-Phase Machine with Consecutive Three Phases. Politeknik Dergisi. December 2024;27(6):2139-2149. doi:10.2339/politeknik.1406553
Chicago Akay, Ali. “Driving a Symmetric Permanent Magnet Synchronous Six-Phase Machine With Consecutive Three Phases”. Politeknik Dergisi 27, no. 6 (December 2024): 2139-49. https://doi.org/10.2339/politeknik.1406553.
EndNote Akay A (December 1, 2024) Driving a Symmetric Permanent Magnet Synchronous Six-Phase Machine with Consecutive Three Phases. Politeknik Dergisi 27 6 2139–2149.
IEEE A. Akay, “Driving a Symmetric Permanent Magnet Synchronous Six-Phase Machine with Consecutive Three Phases”, Politeknik Dergisi, vol. 27, no. 6, pp. 2139–2149, 2024, doi: 10.2339/politeknik.1406553.
ISNAD Akay, Ali. “Driving a Symmetric Permanent Magnet Synchronous Six-Phase Machine With Consecutive Three Phases”. Politeknik Dergisi 27/6 (December 2024), 2139-2149. https://doi.org/10.2339/politeknik.1406553.
JAMA Akay A. Driving a Symmetric Permanent Magnet Synchronous Six-Phase Machine with Consecutive Three Phases. Politeknik Dergisi. 2024;27:2139–2149.
MLA Akay, Ali. “Driving a Symmetric Permanent Magnet Synchronous Six-Phase Machine With Consecutive Three Phases”. Politeknik Dergisi, vol. 27, no. 6, 2024, pp. 2139-4, doi:10.2339/politeknik.1406553.
Vancouver Akay A. Driving a Symmetric Permanent Magnet Synchronous Six-Phase Machine with Consecutive Three Phases. Politeknik Dergisi. 2024;27(6):2139-4.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.