Research Article
BibTex RIS Cite

Numerical Analysis of Effective Die Heating Parameters in Induction Hot Forming

Year 2024, , 2403 - 2410, 12.12.2024
https://doi.org/10.2339/politeknik.1588854

Abstract

Today, one of the most effective methods to save fuel, especially in the aviation and automotive sectors, is to reduce weight. For this reason, materials with relatively lower specific weight are preferred in places where high strength material is required. The formability of materials with this feature is generally not suitable for cold forming. For this reason, hot forming methods are preferred. Among these methods, the induction hot forming method stands out because it provides rapid temperature increase, environmentally friendly and has low energy consumption. In this study, the effective parameters were determined and numerically analyzed so that the die can reach the desired temperature in the fastest and most appropriate way during induction hot forming. In the study, the designed die and rectangular coil model were analyzed with the finite element method according to different current values. Current values of 601A, 726A and 828A were given to the system, respectively, and the desired temperature was reached at 828A. Thermal stress times were calculated mathematically for all current values and it was observed that no current value reached a value that would cause thermal cracking.

References

  • [1] Kleiner, M., Geiger, M., & Klaus, A., “Manufacturing of lightweight components by metal forming.” CIRP annals, 52(2), 521-542. (2003).
  • [2] Neugebauer, R., Altan, T., Geiger, M., Kleiner, M., & Sterzing, A., “Sheet metal forming at elevated temperatures.” CIRP annals, 55(2), 793-816. (2006).
  • [3] Karbasian, H., & Tekkaya, A. E., “A review on hot stamping.” Journal of Materials Processing Technology, 210(15), 2103-2118. (2010).
  • [4] Mori, K., Maki, S., & Tanaka, Y., “Warm and hot stamping of ultra high tensile strength steel sheets using resistance heating.” CIRP annals, 54(1), 209-212. (2005).
  • [5] Yanagimoto, J., Oyamada, K., & Nakagawa, T., ” Springback of high-strength steel after hot and warm sheet formings.” CIRP annals, 54(1), 213-216. (2005).
  • [6] Yanagimoto, J., & Oyamada, K., “Mechanism of springback-free bending of high-strength steel sheets under warm forming conditions.” CIRP annals, 56(1), 265-268. (2007).
  • [7] Bariani, P. F., Bruschi, S., Ghiotti, A., & Turetta, A., “Testing formability in the hot stamping of HSS.” CIRP annals, 57(1), 265-268., (2008).
  • [8] Kotkunde, N., Deole, A. D., Gupta, A. K., Singh, S. K., & Aditya, B., “Failure and formability studies in warm deep drawing of Ti–6Al–4V alloy.” Materials & Design, 60, 540-547., (2014).
  • [9] Perez, J. A., Eguía, V. M., Sobrino, J. C., & Martínez, A. M., “Experimental results and constitutive model of the mechanical behavior of Ti6Al4V alloy at high temperature.” Procedia Manufacturing, 41, 723-730., (2019).
  • [10] Stachowicz, F., Trzepieciński, T., & Pieja, T., “Warm forming of stainless steel sheet.” Archives of Civil and Mechanical Engineering, 10(4), 85-94., (2010).
  • [11] Mori, K. I., Bariani, P. F., Behrens, B. A., Brosius, A., Bruschi, S., Maeno, T., ... & Yanagimoto, J. J. C. A., “Hot stamping of ultra-high strength steel parts.” Cirp Annals, 66(2), 755-777., (2017).
  • [12] Song, M. C., & Moon, Y. H., “Coupled electromagnetic and thermal analysis of induction heating for the forging of marine crankshafts.” Applied Thermal Engineering, 98, 98-109., (2016).
  • [13] Kim, D. K., Woo, Y. Y., Park, K. S., Sim, W. J., & Moon, Y. H., “Advanced induction heating system for hot stamping.” The international journal of advanced manufacturing technology, 99, 583-593., (2018).
  • [14] Kolleck, R., Veit, R., Merklein, M., Lechler, J., & Geiger, M., “Investigation on induction heating for hot stamping of boron alloyed steels.” CIRP annals, 58(1), 275-278. (2009).
  • [15] Huang, M. S., & Tai, N. S., “Experimental rapid surface heating by induction for micro‐injection molding of light‐guided plates.” Journal of applied polymer science, 113(2), 1345-1354., (2009).
  • [16] Francesco, G., Giuseppina, A., & Luigino, F., “Incremental forming with local induction heating on materials with magnetic and non-magnetic properties.” Procedia Engineering, 183, 143-148., (2017).
  • [17] Frizen, V., Tarasov, F., Bychkov, S., Fatkullin, S., & Sarapulov, S., “Induction heating system for die tooling of press for isothermal stamping of large-sized parts.” In IOP Conference Series: Materials Science and Engineering (Vol. 950, No. 1, p. 012011). IOP Publishing., (2020).
  • [18] Schwingenschlögl, P., & Merklein, M., “Characterization of tribological conditions within direct hot stamping.” Journal of Materials Processing Technology, 278, 116535., (2020).
  • [19] Tang, Z., Gu, Z., Li, Y., Li, X., Yu, G., & Yi, L., “Study on the Effect of the Pre-Forming of 22MnB5 Steel in Indirect Hot Stamping.” Materials, 16(10), 3739., (2023).
  • [20] Dvorak, B., Tawk, J. J., & Vít, T. “Advanced Design for Continuous Roller Furnace for Hot Forming Line.” In IOP Conference Series: Materials Science and Engineering (Vol. 418, No. 1, p. 012017). IOP Publishing., (2018).
  • [21] Ozturk, F., Ece, R. E., Polat, N., Koksal, A., Evis, Z., & Sheikh-Ahmad, J. Y. “Application of electric resistance heating method on titanium hot forming at industrial scale.” Arabian Journal for Science and Engineering, 41, 4441-4448., (2016).
  • [22] Sun, Y., Wang, Y., Yang, X., & Pang, L., “A novel coil distribution for transverse flux induction heating.” Physics Procedia, 50, 32-37., (2013).
  • [23] Bayerl, T., Duhovic, M., Mitschang, P., & Bhattacharyya, D., “The heating of polymer composites by electromagnetic induction–A review.” Composites Part A: Applied Science and Manufacturing, 57, 27-40., (2014).
  • [24] Ozturk, F., Polat, A. N., Ece, R. E., Sever, H. M., & Erol, E., U.S. Patent Application No. 18/015,481., (2023).
  • [25] Zinn, S., & Semiatin, S. L., Elements of Induction Heating-Design, Control, and Applications. ASM International. Electronic Power Research Institute., (1988).
  • [26] Rudnev, V., Loveless, D., & Cook, R. L., Handbook of induction heating. CRC press., (2017).
  • [27] Dvorkin Y., Wang Y., Pandzic H., Kirschen D., “Comparison of Scenario Reduction Techniques for the Stochastic Unit Commitment.” IEEE PES General Meeting| Conference & Exposition, 1-5., (2014).
  • [28] Davies, J. Conduction and induction heating (No. 11). IET., (1989).
  • [29] Moser, L., “Experimental analysis and modeling of susceptorless induction welding of high performance thermoplastic polymer composites” (Doctoral dissertation, Dissertation, Kaiserslautern, Technische Universität Kaiserslautern)., (2012).
  • [30] Rapoport, E., & Pleshivtseva, Y., Optimal control of induction heating processes. CRC Press., (2006).
  • [31] Marashi, J., Yakushina, E., Xirouchakis, P., Zante, R., & Foster, J., “An evaluation of H13 tool steel deformation in hot forging conditions.” Journal of Materials Processing Technology, 246, 276-284. (2017).
  • [32] Kennedy, M. W., Akhtar, S., Bakken, J. A., & Aune, R. E., “Analytical and FEM modeling of aluminum billet induction heating with experimental verification.” Light Metals 2012, 269-275. (2016).
  • [33] Bao, L., Qi, X. W., Mei, R. B., Zhang, X., & Li, G. L. “Investigation and modelling of work roll temperature in induction heating by finite element method.” Journal of the Southern African Institute of Mining and Metallurgy, 118(7), 735-743., (2018).
  • [34] Guerrier, P., Nielsen, K. K., Menotti, S., & Hattel, J. H. “An axisymmetrical non-linear finite element model for induction heating in injection molding tools.” Finite Elements in Analysis and Design, 110, 1-10., (2016).
  • [35] Badia, A., Alves, J., Bay, F., & Barlier, J., “On the effect of boundary conditions for electromagnetism in induction heat treatment simulations.” In AIP Conference Proceedings (Vol. 2113, No. 1). AIP Publishing, (2019).
  • [36] Alves, J. R., Barlier, J., Marie, S., Beraudo, C., & Bay, F. “Modelling of large displacements and large strains in coupled electromagnetic/solid mechanics/heat transfer problems.” In 8th International Conference on Electromagnetic Processing of Materials., (2015).

İndüksiyon ile Sıcak Şekillendirmede Etkin Kalıp Isıtma Parametrelerin Sayısal Analizi

Year 2024, , 2403 - 2410, 12.12.2024
https://doi.org/10.2339/politeknik.1588854

Abstract

Günümüzde özellikle havacılık ve otomotiv sektörlerinde yakıt tasarrufu sağlamak için en etkin yöntemlerden biri ağırlık azaltmaktır. Bu nedenle yüksek mukavemet gereken yerlerde görece daha düşük özgül ağırlığa sahip malzemeler tercih edilmektedir. Bu özelliğe sahip malzemelerin şekillendirilebilme kabiliyetleri genellikle soğuk şekillendirme için uygun değildir. Bu sebeple sıcak şekillendirme yöntemleri tercih edilmektedir. Bu yöntemler arasında hızlı sıcaklık artışı sağlaması, çevre dostu olması ve düşük enerji tüketimi gibi özelliklere sahip olması nedeniyle yenilikçi indüksiyon ile sıcak şekillendirme yöntemi öne çıkmaktadır. Bu çalışmada indüksiyon ile sıcak şekillendirme sırasında kalıbın istenilen sıcaklığa en hızlı ve uygun şekilde gelebilmesi için etkin parametrelerin tespiti ve sayısal analizi yapılmıştır. Yapılan çalışmada, tasarlanan kalıp ve dörtgensel bobin modeli farklı akım değerlerine göre sonlu elemanlar metodu ile analiz edilmiştir. Sırasıyla 601A, 726A ve 828A akım değerleri sisteme verilmiş ve istenilen sıcaklığa 828A değerinde ulaşılmıştır. Tüm akım değerlerine göre termal gerilim hesabı matematiksel olarak hesaplanmış ve hiçbir akım değerinde termal çatlağa sebebiyet verecek bir değere ulaşılmadığı görülmüştür.

References

  • [1] Kleiner, M., Geiger, M., & Klaus, A., “Manufacturing of lightweight components by metal forming.” CIRP annals, 52(2), 521-542. (2003).
  • [2] Neugebauer, R., Altan, T., Geiger, M., Kleiner, M., & Sterzing, A., “Sheet metal forming at elevated temperatures.” CIRP annals, 55(2), 793-816. (2006).
  • [3] Karbasian, H., & Tekkaya, A. E., “A review on hot stamping.” Journal of Materials Processing Technology, 210(15), 2103-2118. (2010).
  • [4] Mori, K., Maki, S., & Tanaka, Y., “Warm and hot stamping of ultra high tensile strength steel sheets using resistance heating.” CIRP annals, 54(1), 209-212. (2005).
  • [5] Yanagimoto, J., Oyamada, K., & Nakagawa, T., ” Springback of high-strength steel after hot and warm sheet formings.” CIRP annals, 54(1), 213-216. (2005).
  • [6] Yanagimoto, J., & Oyamada, K., “Mechanism of springback-free bending of high-strength steel sheets under warm forming conditions.” CIRP annals, 56(1), 265-268. (2007).
  • [7] Bariani, P. F., Bruschi, S., Ghiotti, A., & Turetta, A., “Testing formability in the hot stamping of HSS.” CIRP annals, 57(1), 265-268., (2008).
  • [8] Kotkunde, N., Deole, A. D., Gupta, A. K., Singh, S. K., & Aditya, B., “Failure and formability studies in warm deep drawing of Ti–6Al–4V alloy.” Materials & Design, 60, 540-547., (2014).
  • [9] Perez, J. A., Eguía, V. M., Sobrino, J. C., & Martínez, A. M., “Experimental results and constitutive model of the mechanical behavior of Ti6Al4V alloy at high temperature.” Procedia Manufacturing, 41, 723-730., (2019).
  • [10] Stachowicz, F., Trzepieciński, T., & Pieja, T., “Warm forming of stainless steel sheet.” Archives of Civil and Mechanical Engineering, 10(4), 85-94., (2010).
  • [11] Mori, K. I., Bariani, P. F., Behrens, B. A., Brosius, A., Bruschi, S., Maeno, T., ... & Yanagimoto, J. J. C. A., “Hot stamping of ultra-high strength steel parts.” Cirp Annals, 66(2), 755-777., (2017).
  • [12] Song, M. C., & Moon, Y. H., “Coupled electromagnetic and thermal analysis of induction heating for the forging of marine crankshafts.” Applied Thermal Engineering, 98, 98-109., (2016).
  • [13] Kim, D. K., Woo, Y. Y., Park, K. S., Sim, W. J., & Moon, Y. H., “Advanced induction heating system for hot stamping.” The international journal of advanced manufacturing technology, 99, 583-593., (2018).
  • [14] Kolleck, R., Veit, R., Merklein, M., Lechler, J., & Geiger, M., “Investigation on induction heating for hot stamping of boron alloyed steels.” CIRP annals, 58(1), 275-278. (2009).
  • [15] Huang, M. S., & Tai, N. S., “Experimental rapid surface heating by induction for micro‐injection molding of light‐guided plates.” Journal of applied polymer science, 113(2), 1345-1354., (2009).
  • [16] Francesco, G., Giuseppina, A., & Luigino, F., “Incremental forming with local induction heating on materials with magnetic and non-magnetic properties.” Procedia Engineering, 183, 143-148., (2017).
  • [17] Frizen, V., Tarasov, F., Bychkov, S., Fatkullin, S., & Sarapulov, S., “Induction heating system for die tooling of press for isothermal stamping of large-sized parts.” In IOP Conference Series: Materials Science and Engineering (Vol. 950, No. 1, p. 012011). IOP Publishing., (2020).
  • [18] Schwingenschlögl, P., & Merklein, M., “Characterization of tribological conditions within direct hot stamping.” Journal of Materials Processing Technology, 278, 116535., (2020).
  • [19] Tang, Z., Gu, Z., Li, Y., Li, X., Yu, G., & Yi, L., “Study on the Effect of the Pre-Forming of 22MnB5 Steel in Indirect Hot Stamping.” Materials, 16(10), 3739., (2023).
  • [20] Dvorak, B., Tawk, J. J., & Vít, T. “Advanced Design for Continuous Roller Furnace for Hot Forming Line.” In IOP Conference Series: Materials Science and Engineering (Vol. 418, No. 1, p. 012017). IOP Publishing., (2018).
  • [21] Ozturk, F., Ece, R. E., Polat, N., Koksal, A., Evis, Z., & Sheikh-Ahmad, J. Y. “Application of electric resistance heating method on titanium hot forming at industrial scale.” Arabian Journal for Science and Engineering, 41, 4441-4448., (2016).
  • [22] Sun, Y., Wang, Y., Yang, X., & Pang, L., “A novel coil distribution for transverse flux induction heating.” Physics Procedia, 50, 32-37., (2013).
  • [23] Bayerl, T., Duhovic, M., Mitschang, P., & Bhattacharyya, D., “The heating of polymer composites by electromagnetic induction–A review.” Composites Part A: Applied Science and Manufacturing, 57, 27-40., (2014).
  • [24] Ozturk, F., Polat, A. N., Ece, R. E., Sever, H. M., & Erol, E., U.S. Patent Application No. 18/015,481., (2023).
  • [25] Zinn, S., & Semiatin, S. L., Elements of Induction Heating-Design, Control, and Applications. ASM International. Electronic Power Research Institute., (1988).
  • [26] Rudnev, V., Loveless, D., & Cook, R. L., Handbook of induction heating. CRC press., (2017).
  • [27] Dvorkin Y., Wang Y., Pandzic H., Kirschen D., “Comparison of Scenario Reduction Techniques for the Stochastic Unit Commitment.” IEEE PES General Meeting| Conference & Exposition, 1-5., (2014).
  • [28] Davies, J. Conduction and induction heating (No. 11). IET., (1989).
  • [29] Moser, L., “Experimental analysis and modeling of susceptorless induction welding of high performance thermoplastic polymer composites” (Doctoral dissertation, Dissertation, Kaiserslautern, Technische Universität Kaiserslautern)., (2012).
  • [30] Rapoport, E., & Pleshivtseva, Y., Optimal control of induction heating processes. CRC Press., (2006).
  • [31] Marashi, J., Yakushina, E., Xirouchakis, P., Zante, R., & Foster, J., “An evaluation of H13 tool steel deformation in hot forging conditions.” Journal of Materials Processing Technology, 246, 276-284. (2017).
  • [32] Kennedy, M. W., Akhtar, S., Bakken, J. A., & Aune, R. E., “Analytical and FEM modeling of aluminum billet induction heating with experimental verification.” Light Metals 2012, 269-275. (2016).
  • [33] Bao, L., Qi, X. W., Mei, R. B., Zhang, X., & Li, G. L. “Investigation and modelling of work roll temperature in induction heating by finite element method.” Journal of the Southern African Institute of Mining and Metallurgy, 118(7), 735-743., (2018).
  • [34] Guerrier, P., Nielsen, K. K., Menotti, S., & Hattel, J. H. “An axisymmetrical non-linear finite element model for induction heating in injection molding tools.” Finite Elements in Analysis and Design, 110, 1-10., (2016).
  • [35] Badia, A., Alves, J., Bay, F., & Barlier, J., “On the effect of boundary conditions for electromagnetism in induction heat treatment simulations.” In AIP Conference Proceedings (Vol. 2113, No. 1). AIP Publishing, (2019).
  • [36] Alves, J. R., Barlier, J., Marie, S., Beraudo, C., & Bay, F. “Modelling of large displacements and large strains in coupled electromagnetic/solid mechanics/heat transfer problems.” In 8th International Conference on Electromagnetic Processing of Materials., (2015).
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Numerical and Computational Mathematics (Other), Engineering Electromagnetics, Electronic, Optics and Magnetic Materials, Manufacturing Processes and Technologies (Excl. Textiles)
Journal Section Research Article
Authors

Emre Erol 0000-0002-7053-5145

Tayfun Menlik 0000-0003-0970-6600

Çetin Karataş 0000-0003-0005-3068

Adnan Sözen 0000-0002-8373-2674

Early Pub Date December 10, 2024
Publication Date December 12, 2024
Submission Date November 21, 2024
Acceptance Date December 3, 2024
Published in Issue Year 2024

Cite

APA Erol, E., Menlik, T., Karataş, Ç., Sözen, A. (2024). İndüksiyon ile Sıcak Şekillendirmede Etkin Kalıp Isıtma Parametrelerin Sayısal Analizi. Politeknik Dergisi, 27(6), 2403-2410. https://doi.org/10.2339/politeknik.1588854
AMA Erol E, Menlik T, Karataş Ç, Sözen A. İndüksiyon ile Sıcak Şekillendirmede Etkin Kalıp Isıtma Parametrelerin Sayısal Analizi. Politeknik Dergisi. December 2024;27(6):2403-2410. doi:10.2339/politeknik.1588854
Chicago Erol, Emre, Tayfun Menlik, Çetin Karataş, and Adnan Sözen. “İndüksiyon Ile Sıcak Şekillendirmede Etkin Kalıp Isıtma Parametrelerin Sayısal Analizi”. Politeknik Dergisi 27, no. 6 (December 2024): 2403-10. https://doi.org/10.2339/politeknik.1588854.
EndNote Erol E, Menlik T, Karataş Ç, Sözen A (December 1, 2024) İndüksiyon ile Sıcak Şekillendirmede Etkin Kalıp Isıtma Parametrelerin Sayısal Analizi. Politeknik Dergisi 27 6 2403–2410.
IEEE E. Erol, T. Menlik, Ç. Karataş, and A. Sözen, “İndüksiyon ile Sıcak Şekillendirmede Etkin Kalıp Isıtma Parametrelerin Sayısal Analizi”, Politeknik Dergisi, vol. 27, no. 6, pp. 2403–2410, 2024, doi: 10.2339/politeknik.1588854.
ISNAD Erol, Emre et al. “İndüksiyon Ile Sıcak Şekillendirmede Etkin Kalıp Isıtma Parametrelerin Sayısal Analizi”. Politeknik Dergisi 27/6 (December 2024), 2403-2410. https://doi.org/10.2339/politeknik.1588854.
JAMA Erol E, Menlik T, Karataş Ç, Sözen A. İndüksiyon ile Sıcak Şekillendirmede Etkin Kalıp Isıtma Parametrelerin Sayısal Analizi. Politeknik Dergisi. 2024;27:2403–2410.
MLA Erol, Emre et al. “İndüksiyon Ile Sıcak Şekillendirmede Etkin Kalıp Isıtma Parametrelerin Sayısal Analizi”. Politeknik Dergisi, vol. 27, no. 6, 2024, pp. 2403-10, doi:10.2339/politeknik.1588854.
Vancouver Erol E, Menlik T, Karataş Ç, Sözen A. İndüksiyon ile Sıcak Şekillendirmede Etkin Kalıp Isıtma Parametrelerin Sayısal Analizi. Politeknik Dergisi. 2024;27(6):2403-10.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.