Research Article
BibTex RIS Cite

R260 Çeliklerinin İşlenmesinde Kesme Parametrelerinin Yüzey Pürüzlülüğü, Güç Tüketimi ve Makine Gürültüsü Üzerine Etkileri

Year 2018, , 237 - 244, 31.03.2018
https://doi.org/10.2339/politeknik.371299

Abstract

Hadfield çelikleri yüksek aşınma direncine, tokluğa, yüksek akma ve çekme mukavemetine sahip malzemelerdir. Ray çelikleri olarak da bilinen Hadfield çelikleri aşınma, darbe ve yorulma dayanımından dolayı çoğunlukla demiryolu ulaşımında kullanılmaktadır. Bu çalışmada, Hadfield çeliklerinin işleme davranışı ve işleme parametrelerinin yüzey pürüzlülüğü, makine gürültüsü ve güç tüketimi üzerindeki etkisi kuru işleme koşullarında yatay freze tezgâhı kullanılarak araştırılmıştır. Deneysel çalışmalar, ağır işleme koşullarında sabit kesme hızı, dört farklı ilerleme hızı ve altı farklı talaş derinliğinde ve gerçek bir üretim ortamında yapıldı. Frezeleme değişkenlerinin yüzey pürüzlülüğü, makine gürültüsü ve güç tüketimi üzerindeki etkisi varyans analizi (ANOVA) kullanılarak değerlendirildi. Deneysel sonuçlar, kesme derinliğinin yüzey pürüzlülüğü üzerindeki en önemli kesme parametresi olduğunu göstermiştir. Kesme derinliğinin artmasıyla yüzey pürüzlülüğü değeri belirgin şekilde iyileşmiştir. Güç tüketimi ve makine gürültüsü, deneylerde kullanılan artan ilerleme hızı ve kesme derinliği değerlerinin artmasından etkilenmiştir.

References

  • 1. Kıvak T., "Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts." Measurement 50: 19-28, (2014).
  • 2. Kocabekir I., Tunca N., Özer O., Tümer C, Eker C.B., Özçelik S., Çuğ H., Ahlatci H., “Demir Yolu Ray Sistemlerinde Kullanılan Hadfıeld Çeliğinin Aşınma Davranışı”. 2. Uluslararası Raylı Sistemler Mühendisliği Sempozyumu (ISERSE’13), Karabük, Türkiye, 9-11 Ekim 2013.
  • 3. Canadinc D., Sehitoglu H., Maier H. J., Chumlyakov Y. I., "Strain hardening behavior of aluminum alloyed Hadfield steel single crystals.", Acta Materialia, 53 (6): 1831-1842, (2005).
  • 4. Horng, Jenn-Tsong, Nun-Ming Liu, and Ko-Ta Chiang. "Investigating the machinability evaluation of Hadfield steel in the hard turning with Al2O3/TiC mixed ceramic tool based on the response surface methodology", Journal of Materials Processing Technology, 208(1): 532-541, (2008).
  • 5. Ghani A. K., and Choudhury I. A., "Study of tool life, surface roughness and vibration in machining nodular cast iron with ceramic tool", Journal of Materials Processing Technology,127(1): 17-22, (2002).
  • 6. Şeker U., and Hasirci H., "Evaluation of machinability of austempered ductile irons in terms of cutting forces and surface quality", Journal of Materials Processing Technology, 173(3): 260-268, (2006).
  • 7. Neşeli S. and Yaldız S., "Tornalamada Yaklaşma Açısı ve Talaş Açısına Bağlı Tırlama Titreşimlerinin Yüzey Pürüzlülüğüne Etkileri" Politeknik Dergisi, 10 (4): 383 – 389, (2007).
  • 8. Rech J., Dumont F., Le Bot A., Arrazola P. J., "Reduction of noise during milling operations", CIRP Journal of Manufacturing Science and Technology, 18: 39-44, (2017).
  • 9. Weck M., and W Melder., "Problems in assessing the noise behavior of machine tools", CIRP Annals , 26 (2): 397, (1977).
  • 10. Bley H., Günter K. G., Haeusler J., Noe E. L., Rosenkranz W., "Machine Concentration and Noise Annoyance in the Workshop", CIRP Annals-Manufacturing Technology, 29(1): 269-273, (1980).
  • 11. Bollinger J. G., "Noise - An industrial pollutant of international concern", CIRP Annals, 22(2): 197-202, (1973).
  • 12. Hesselbach J., Hoffmeister H.-W., Schuller B.-C. and Loeis K., "Development of an active clamping system for noise and vibration reduction", CIRP Annals-Manufacturing Technology,59 (1): 395-398, (2010).
  • 13. Quintana G., Ciurana J., Ferrer I. and Rodriguez C. A., "Sound mapping for identification of stability lobe diagrams in milling processes", International journal of machine tools and manufacture, 49 (3): 203-211, (2009).
  • 14. Lu B. H., Lin Z. H., Hwang X. T., Ku C. H. And Tobisa S. A., "On-line identification of dynamic behaviour of machine tool structures during stable cutting", CIRP Annals-Manufacturing Technology, 32(1): 315-318, (1983).
  • 15. Ji C., Liu Z., and Ai X., "Effect of cutter geometric configuration on aerodynamic noise generation in face milling cutters", Applied Acoustics, 75: 43-5, (2014).
  • 16. Tekiner Z., and Yeşilyurt S., "Investigation of the cutting parameters depending on process sound during turning of AISI 304 austenitic stainless steel", Materials & Design, 25(6): 507-513, (2004).
  • 17. Şahinoğlu A., Güllü A., Dönertaş M. A., “GGG50 Malzemenin torna tezgâhında işlenmesinde kesme parametrelerinin titreşim , ses şiddeti ve yüzey pürüzlülüğü üzerinde etkisinin araştırılması”, Sinop Üniversitesi Fen Bilimleri Dergisi, 2: 67–79, (2017).
  • 18. Şahinoğlu A., Karabulut Ş., Güllü A., "Study on spindle vibration and surface finish in turning of Al 7075", Solid State Phenomena. Trans Tech Publications, 261: 321-327, (2017). 19. Sealy M. P., Liu Z. Y., Zhang D., Guo Y. B., and Liu Z. Q. “Energy consumption and modeling in precision hard milling”, Journal of Cleaner Production, 135: 1591-1601, (2016).
  • 20. Avram O. L. and Xirouchakis P., "Evaluating the use phase energy requirements of a machine tool system", Journal of Cleaner Production,19(6): 699-711, (2011).
  • 21. Balogun V. A. and Mativenga P. T., "Modelling of direct energy requirements in mechanical machining processes", Journal of Cleaner Production, 41:179-186, (2013).
  • 22. Diaz N., Redelsheimer E. and Dornfeld D., "Energy consumption characterization and reduction strategies for milling machine tool use", Glocalized solutions for sustainability in manufacturing, 263-267, (2011).
  • 23. Diaz, Nancy, Elena Redelsheimer, and David Dornfeld. "Energy consumption characterization and reduction strategies for milling machine tool use."Glocalized solutions for sustainability in manufacturing, 263-267, (2011).
  • 24. Draganescu F., Gheorghe M. and Doicin C. V., "Models of machine tool efficiency and specific consumed energy", Journal of Materials Processing Technology, 141(1): 9-15, (2003).
  • 25. Bhuiyan M. S. H., Choudhury I. A., "Review of Sensor Applications in Tool Condition Monitoring in Machining", Comprehensive Materials Processing 13: 539-569, (2014).
  • 26. Toh C. K., "Comparison of chip surface temperature between up and down milling orientations in high speed rough milling of hardened steel", Journal of Materials Processing Technology, 167(1):110-118, (2005).
  • 27. Korkut, I., Acır A. and Boy M., "Application of regression and artificial neural network analysis in modelling of tool–chip interface temperature in machining", Expert Systems with Applications, 38(9): 11651-11656, (2011).
  • 28. Canadinc D. Sehitoglu, H., “Alüminyum Alaşımlı Hadfield Çeliklerinde Aykırı Yerleşim Aktiviteleri”. Makine Teknolojileri Elektronik Dergisi 5(2): 1-6, (2008).
  • 29. Özler L., Tosun N., İnan A., “Ostenitik Manganlı Çeliğin Sıcak Talaşlı İslenmesinde Yüzey Pürüzlülüğünün incelenmesi”, Turkish Journal of Engineering and Environmental Sciences, 24: 287-296, (2000).
  • 30. Özel T. Karpat Y., "Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks" International Journal of Machine Tools and Manufacture 45 (4): 467-479 (2005).
  • 31. Sarıkaya M., Abdulkadir G., "Taguchi design and response surface methodology based analysis of machining parameters in CNC turning under MQL", Journal of Cleaner Production, 65: 604-616 (2014).
  • 32. Kant G., Kuldip S. S., "Prediction and optimization of machining parameters for minimizing power consumption and surface roughness in machining", Journal of cleaner production,83: 151-164, (2014).

Effect of the Cutting Parameters on Surface Roughness, Power Consumption and Machine Noise in Machining of R260 Steel

Year 2018, , 237 - 244, 31.03.2018
https://doi.org/10.2339/politeknik.371299

Abstract

Hadfield steels are the materials having with high wear resistance, toughness, high yield and tensile strength. Hadfield steels, also known as rail steels, are commonly used for rail transport due to their wear, impact and fatigue strength. In this study, machining behavior of the Hadfield steels and the effect of the machining parameters on surface roughness, machine noise and power consumption were investigated under dry cutting conditions using horizontal milling machine. Experimental studies were carried out a real production environment using constant cutting speed, four different feed rate and six different depth of cut under heavy machining conditions. The influence of the milling variables on surface roughness, machine noise and power consumption were evaluated by using Analysis of variance (ANOVA). The experimental results showed that the depth of cut was the most significant cutting parameter on the surface roughness. Surface roughness value was remarkably improved with increasing depth of cut. Power consumption and machine noise were affected from increasing feed rate and depth of cut values used in the experiments.

References

  • 1. Kıvak T., "Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts." Measurement 50: 19-28, (2014).
  • 2. Kocabekir I., Tunca N., Özer O., Tümer C, Eker C.B., Özçelik S., Çuğ H., Ahlatci H., “Demir Yolu Ray Sistemlerinde Kullanılan Hadfıeld Çeliğinin Aşınma Davranışı”. 2. Uluslararası Raylı Sistemler Mühendisliği Sempozyumu (ISERSE’13), Karabük, Türkiye, 9-11 Ekim 2013.
  • 3. Canadinc D., Sehitoglu H., Maier H. J., Chumlyakov Y. I., "Strain hardening behavior of aluminum alloyed Hadfield steel single crystals.", Acta Materialia, 53 (6): 1831-1842, (2005).
  • 4. Horng, Jenn-Tsong, Nun-Ming Liu, and Ko-Ta Chiang. "Investigating the machinability evaluation of Hadfield steel in the hard turning with Al2O3/TiC mixed ceramic tool based on the response surface methodology", Journal of Materials Processing Technology, 208(1): 532-541, (2008).
  • 5. Ghani A. K., and Choudhury I. A., "Study of tool life, surface roughness and vibration in machining nodular cast iron with ceramic tool", Journal of Materials Processing Technology,127(1): 17-22, (2002).
  • 6. Şeker U., and Hasirci H., "Evaluation of machinability of austempered ductile irons in terms of cutting forces and surface quality", Journal of Materials Processing Technology, 173(3): 260-268, (2006).
  • 7. Neşeli S. and Yaldız S., "Tornalamada Yaklaşma Açısı ve Talaş Açısına Bağlı Tırlama Titreşimlerinin Yüzey Pürüzlülüğüne Etkileri" Politeknik Dergisi, 10 (4): 383 – 389, (2007).
  • 8. Rech J., Dumont F., Le Bot A., Arrazola P. J., "Reduction of noise during milling operations", CIRP Journal of Manufacturing Science and Technology, 18: 39-44, (2017).
  • 9. Weck M., and W Melder., "Problems in assessing the noise behavior of machine tools", CIRP Annals , 26 (2): 397, (1977).
  • 10. Bley H., Günter K. G., Haeusler J., Noe E. L., Rosenkranz W., "Machine Concentration and Noise Annoyance in the Workshop", CIRP Annals-Manufacturing Technology, 29(1): 269-273, (1980).
  • 11. Bollinger J. G., "Noise - An industrial pollutant of international concern", CIRP Annals, 22(2): 197-202, (1973).
  • 12. Hesselbach J., Hoffmeister H.-W., Schuller B.-C. and Loeis K., "Development of an active clamping system for noise and vibration reduction", CIRP Annals-Manufacturing Technology,59 (1): 395-398, (2010).
  • 13. Quintana G., Ciurana J., Ferrer I. and Rodriguez C. A., "Sound mapping for identification of stability lobe diagrams in milling processes", International journal of machine tools and manufacture, 49 (3): 203-211, (2009).
  • 14. Lu B. H., Lin Z. H., Hwang X. T., Ku C. H. And Tobisa S. A., "On-line identification of dynamic behaviour of machine tool structures during stable cutting", CIRP Annals-Manufacturing Technology, 32(1): 315-318, (1983).
  • 15. Ji C., Liu Z., and Ai X., "Effect of cutter geometric configuration on aerodynamic noise generation in face milling cutters", Applied Acoustics, 75: 43-5, (2014).
  • 16. Tekiner Z., and Yeşilyurt S., "Investigation of the cutting parameters depending on process sound during turning of AISI 304 austenitic stainless steel", Materials & Design, 25(6): 507-513, (2004).
  • 17. Şahinoğlu A., Güllü A., Dönertaş M. A., “GGG50 Malzemenin torna tezgâhında işlenmesinde kesme parametrelerinin titreşim , ses şiddeti ve yüzey pürüzlülüğü üzerinde etkisinin araştırılması”, Sinop Üniversitesi Fen Bilimleri Dergisi, 2: 67–79, (2017).
  • 18. Şahinoğlu A., Karabulut Ş., Güllü A., "Study on spindle vibration and surface finish in turning of Al 7075", Solid State Phenomena. Trans Tech Publications, 261: 321-327, (2017). 19. Sealy M. P., Liu Z. Y., Zhang D., Guo Y. B., and Liu Z. Q. “Energy consumption and modeling in precision hard milling”, Journal of Cleaner Production, 135: 1591-1601, (2016).
  • 20. Avram O. L. and Xirouchakis P., "Evaluating the use phase energy requirements of a machine tool system", Journal of Cleaner Production,19(6): 699-711, (2011).
  • 21. Balogun V. A. and Mativenga P. T., "Modelling of direct energy requirements in mechanical machining processes", Journal of Cleaner Production, 41:179-186, (2013).
  • 22. Diaz N., Redelsheimer E. and Dornfeld D., "Energy consumption characterization and reduction strategies for milling machine tool use", Glocalized solutions for sustainability in manufacturing, 263-267, (2011).
  • 23. Diaz, Nancy, Elena Redelsheimer, and David Dornfeld. "Energy consumption characterization and reduction strategies for milling machine tool use."Glocalized solutions for sustainability in manufacturing, 263-267, (2011).
  • 24. Draganescu F., Gheorghe M. and Doicin C. V., "Models of machine tool efficiency and specific consumed energy", Journal of Materials Processing Technology, 141(1): 9-15, (2003).
  • 25. Bhuiyan M. S. H., Choudhury I. A., "Review of Sensor Applications in Tool Condition Monitoring in Machining", Comprehensive Materials Processing 13: 539-569, (2014).
  • 26. Toh C. K., "Comparison of chip surface temperature between up and down milling orientations in high speed rough milling of hardened steel", Journal of Materials Processing Technology, 167(1):110-118, (2005).
  • 27. Korkut, I., Acır A. and Boy M., "Application of regression and artificial neural network analysis in modelling of tool–chip interface temperature in machining", Expert Systems with Applications, 38(9): 11651-11656, (2011).
  • 28. Canadinc D. Sehitoglu, H., “Alüminyum Alaşımlı Hadfield Çeliklerinde Aykırı Yerleşim Aktiviteleri”. Makine Teknolojileri Elektronik Dergisi 5(2): 1-6, (2008).
  • 29. Özler L., Tosun N., İnan A., “Ostenitik Manganlı Çeliğin Sıcak Talaşlı İslenmesinde Yüzey Pürüzlülüğünün incelenmesi”, Turkish Journal of Engineering and Environmental Sciences, 24: 287-296, (2000).
  • 30. Özel T. Karpat Y., "Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks" International Journal of Machine Tools and Manufacture 45 (4): 467-479 (2005).
  • 31. Sarıkaya M., Abdulkadir G., "Taguchi design and response surface methodology based analysis of machining parameters in CNC turning under MQL", Journal of Cleaner Production, 65: 604-616 (2014).
  • 32. Kant G., Kuldip S. S., "Prediction and optimization of machining parameters for minimizing power consumption and surface roughness in machining", Journal of cleaner production,83: 151-164, (2014).
There are 31 citations in total.

Details

Subjects Engineering
Journal Section Research Article
Authors

Şener Karabulut This is me

Abidin Şahinoğlu This is me

Publication Date March 31, 2018
Submission Date November 9, 2017
Published in Issue Year 2018

Cite

APA Karabulut, Ş., & Şahinoğlu, A. (2018). R260 Çeliklerinin İşlenmesinde Kesme Parametrelerinin Yüzey Pürüzlülüğü, Güç Tüketimi ve Makine Gürültüsü Üzerine Etkileri. Politeknik Dergisi, 21(1), 237-244. https://doi.org/10.2339/politeknik.371299
AMA Karabulut Ş, Şahinoğlu A. R260 Çeliklerinin İşlenmesinde Kesme Parametrelerinin Yüzey Pürüzlülüğü, Güç Tüketimi ve Makine Gürültüsü Üzerine Etkileri. Politeknik Dergisi. March 2018;21(1):237-244. doi:10.2339/politeknik.371299
Chicago Karabulut, Şener, and Abidin Şahinoğlu. “R260 Çeliklerinin İşlenmesinde Kesme Parametrelerinin Yüzey Pürüzlülüğü, Güç Tüketimi Ve Makine Gürültüsü Üzerine Etkileri”. Politeknik Dergisi 21, no. 1 (March 2018): 237-44. https://doi.org/10.2339/politeknik.371299.
EndNote Karabulut Ş, Şahinoğlu A (March 1, 2018) R260 Çeliklerinin İşlenmesinde Kesme Parametrelerinin Yüzey Pürüzlülüğü, Güç Tüketimi ve Makine Gürültüsü Üzerine Etkileri. Politeknik Dergisi 21 1 237–244.
IEEE Ş. Karabulut and A. Şahinoğlu, “R260 Çeliklerinin İşlenmesinde Kesme Parametrelerinin Yüzey Pürüzlülüğü, Güç Tüketimi ve Makine Gürültüsü Üzerine Etkileri”, Politeknik Dergisi, vol. 21, no. 1, pp. 237–244, 2018, doi: 10.2339/politeknik.371299.
ISNAD Karabulut, Şener - Şahinoğlu, Abidin. “R260 Çeliklerinin İşlenmesinde Kesme Parametrelerinin Yüzey Pürüzlülüğü, Güç Tüketimi Ve Makine Gürültüsü Üzerine Etkileri”. Politeknik Dergisi 21/1 (March 2018), 237-244. https://doi.org/10.2339/politeknik.371299.
JAMA Karabulut Ş, Şahinoğlu A. R260 Çeliklerinin İşlenmesinde Kesme Parametrelerinin Yüzey Pürüzlülüğü, Güç Tüketimi ve Makine Gürültüsü Üzerine Etkileri. Politeknik Dergisi. 2018;21:237–244.
MLA Karabulut, Şener and Abidin Şahinoğlu. “R260 Çeliklerinin İşlenmesinde Kesme Parametrelerinin Yüzey Pürüzlülüğü, Güç Tüketimi Ve Makine Gürültüsü Üzerine Etkileri”. Politeknik Dergisi, vol. 21, no. 1, 2018, pp. 237-44, doi:10.2339/politeknik.371299.
Vancouver Karabulut Ş, Şahinoğlu A. R260 Çeliklerinin İşlenmesinde Kesme Parametrelerinin Yüzey Pürüzlülüğü, Güç Tüketimi ve Makine Gürültüsü Üzerine Etkileri. Politeknik Dergisi. 2018;21(1):237-44.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.