Research Article
BibTex RIS Cite

Süt Endüstrisi Atıksuyunun Biyometanizayon Potansiyelinin İncelenmesi

Year 2018, , 457 - 460, 01.06.2018
https://doi.org/10.2339/politeknik.403974

Abstract

Enerji
kaynakları günümüzde yaygın olarak fosil yakıtlar üzerine çalışan sistemlerden
oluşurken özellikle artan nüfus, fosil yakıtların tükenme riskinin olması,
çevreye vermiş oldukları zarar nedeniyle yerini alternatif ve yenilenebilir
enerji kaynaklarına bırakmaya başlamıştır. Türkiye’de yenilenebilir enerji
kaynaklar arasında önemli bir potansiyele sahip olan biyogaz, organik bazlı
atıkların, oksijensiz ortamda anaerobik fermantasyon sistemi uygulanarak
parçalanması sonucu ortaya çıkan ve bileşiminde yanıcı metan gaz bulunan bir
karışımdır. Yapılan bu çalışmada süt endüstrisi atıksuyunun biyometanizasyon
potansiyeli ölçülmüş ve 35 günde 410 ml biyogaz üretilmiş olup deneysel
sonuçlar eğri oluşturularak sayısallaştırılmıştır. Farklı derecelerde çeşitli
polinom denklemleri veri setine uygulanmıştır. Beşinci derece polinom denklemi
en iyi uyumu vermis olup denklemi y = 0.98 x olarak elde edilmiştir. Doğru
uyumun istatistiksel iyiliği SSE, RMSE ve belirleme katsayısına göre
değerlendirilmiş olup SSE, RMSE ve belirleme katsayısı sırasıyla 3130, 9.89 ve
0.99 olarak tespit edilmiştir.

References

  • [1] Andrade, L.H., Motta, G., Amaral, M., "Treatment of dairy wastewater with a membrane bioreactor", Brazilian Jounal of Chemical Engineering, 30(4): 759-770, (2013).
  • [2] Porwal, J., Manea, A.V., Velhal, S.G., "Biodegradation of dairy effluent by using microbial isolates obtained from activated sludge", Water Research, 9: 1–15, (2015).
  • [3] Manh, L.D., "Bioremediation of vegetable oil and grease from polluted wastewater in dairy factory", Journal of. Science National Science Technology, 24: 56–62, (2008).
  • [4] Garcha, S., Kaur, N., Brar, S.K., "Aerobic granulation strategy for the treatment of dairy waste water", Indian Journal of Dairy Science, 67: 1–5, (2014).
  • [5] Vishakha, S.S., Kulkarni, S.W., Minal, W., "Physicochemical characterization of dairy effluents", International Journal Life Science and Pharma Research, 2: 2250–3137, (2013).
  • [6] Schwarzenbeck, N., Borges, J.M., Wilderer, P.A., "Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor", Applied Microbiology Biotechnology, 66 (6): 711–718, (2005).
  • [7] Kushwaha, J.P., Srivastava, V.C., Mall, I.D., "Organics removal from dairy wastewater by electrochemical treatment and residue disposal", Seperation and Purification Technology, 76: 198–205, (2010).
  • [8] Sarkar, B., Chakrabarti,P.P., Vijaykumar, A., Kale, V., "Wastewater treatment in dairy industries-possibility of reuse", Desalination, 195: 141–152, (2006).
  • [9] Hamdani, A., Mountadar, M., Assohei, O.,"Comparative study of the efficacy of three coagulants in treating dairy factory waste water", International Jounal of Dairy Technology, 8: 58–83, (2005).
  • [10] Adhikari, U., Harrigan, T., Reinhold, D.M., "Use of duckweed-based constructed wetlands for nutrient recovery and pollutant reduction from dairy wastewater", Ecological Engineering, 78: 6–14, (2015).
  • [11] Gavala, H.N., Kopsinis, H., Skiadas, I.V., Stamatelatou, K., Lyberatos, G., "Treatment of dairy wastewater using an upflow anaerobic sludge blanket reactor". Journal Of Agrcultural Engineering Research, 73: 59-63, (1999).
  • [12] Neto, S.A., Magri, T.C., Silva, G.M., Andrade, A.R., "Treatment of waste dye by electroflocculation: an experiment for undergraduate in chemistry". Quimica Nova, 34: 1468-1471.(2011).
  • [13] Garcha, S., Kaur, N., Brar, S.K., "Aerobic granulation strategy for the treatment of dairy waste water", Indian Journal of Dairy Science, 67: 1–5, (2014).
  • [14] Manh, L.D., "Bioremediation of vegetable oil and grease from polluted wastewater in dairy factory", Journal of Science Education Technology, 24: 56–62, (2014).
  • [15] Janczukowicz, W., Zielinski, M., Debowski, M., "Biodegradability evaluation of dairy effluents originated in selected sections of dairy production", Bioresource Technology, 99: 4199–4205, (2007).
  • [16] Garcha, S., Verma, N., Brar, S.K., "Comparative study on pollution potential of dairy wastewater generated by organized and unorganized sector", Asian Journal of Microbiology Biotechnology Environment Science, 16: 1051–1056, (2014).
  • [17] Koch, K., Drewes, J.E., "Alternative approach to estimate the hydrolysis rate constant of particulate material from batch data", Applied Energy, 120: 11-15, (2014).
  • [18] Çakir, F., Stenstrom, M., "Greenhouse gas production: A comparison between aerobicand anaerobic wastewater treatment technology", Department of Environmental Engineering Sciences, University of Florida,Gainesville, 39: 4197-4203, (2005).
  • [19] Henriksen, M., Bjerketvedt, D., Vaagsaether, K., Gaathaug, A. V., Skjold, T., Middha, P., "Accidental hydrogen release in a gas chromatograph laboratory: A case study". International Journal of Hydrogen Energy, 42(11): 7651-7656, (2017).
  • [20] Østgaard, K., Kowarz, V., Shuai, W., Henry, I. A., Sposob, M., Haugen, H. H., Bakke, R., Syringe test screening of microbial gas production activity: Cases denitrification and biogas formation. Journal of Microbiological Methods, 132: 119-124, (2017).
  • [21] Martin, A., Borja, R., Garcia, I., & Fiestas, J. A., "Kinetics of methane production from olive mill wastewater", Process Biochemistry, 26(2): 101-107, (1991).
  • [22] Riaño, B., Molinuevo, B., García-González, M. C., "Potential for methane production from anaerobic co-digestion of swine manure with winery wastewater", Bioresource Technology, 102(5): 4131-4136, (2011).

Investigation of Biomethane Potential of Dairy Industry Wastewater

Year 2018, , 457 - 460, 01.06.2018
https://doi.org/10.2339/politeknik.403974

Abstract

While energy sources are now commonly
found in systems that work on fossil fuels, they have begun to relocate to
alternative and renewable sources of energy, especially due to the growing
population, the risk of exhaustion of fossil fuels, and the damage they have
caused to the environment. Biogas, which has an important potential among
renewable energy sources in Turkey, is a mixture of organic-based wastes,
resulting from the disintegration of an anaerobic fermentation system in an
anaerobic environment, with combustible methane gas. In this study, the biomass
potential of the wastewater of the dairy industry was measured and 410 ml
biogas were produced in 35 days and the experimental results of the biogas
production were digitized by creating a curve. Various polynomial equations are
applied to the data set at different grades. The fifth order polynomial
equation is the best fit. The equation was obtained as y = 0.98 x. The SSE,
RMSE and the discriminant coefficient were determined as 3130, 9.89 and 0.99,
respectively.

References

  • [1] Andrade, L.H., Motta, G., Amaral, M., "Treatment of dairy wastewater with a membrane bioreactor", Brazilian Jounal of Chemical Engineering, 30(4): 759-770, (2013).
  • [2] Porwal, J., Manea, A.V., Velhal, S.G., "Biodegradation of dairy effluent by using microbial isolates obtained from activated sludge", Water Research, 9: 1–15, (2015).
  • [3] Manh, L.D., "Bioremediation of vegetable oil and grease from polluted wastewater in dairy factory", Journal of. Science National Science Technology, 24: 56–62, (2008).
  • [4] Garcha, S., Kaur, N., Brar, S.K., "Aerobic granulation strategy for the treatment of dairy waste water", Indian Journal of Dairy Science, 67: 1–5, (2014).
  • [5] Vishakha, S.S., Kulkarni, S.W., Minal, W., "Physicochemical characterization of dairy effluents", International Journal Life Science and Pharma Research, 2: 2250–3137, (2013).
  • [6] Schwarzenbeck, N., Borges, J.M., Wilderer, P.A., "Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor", Applied Microbiology Biotechnology, 66 (6): 711–718, (2005).
  • [7] Kushwaha, J.P., Srivastava, V.C., Mall, I.D., "Organics removal from dairy wastewater by electrochemical treatment and residue disposal", Seperation and Purification Technology, 76: 198–205, (2010).
  • [8] Sarkar, B., Chakrabarti,P.P., Vijaykumar, A., Kale, V., "Wastewater treatment in dairy industries-possibility of reuse", Desalination, 195: 141–152, (2006).
  • [9] Hamdani, A., Mountadar, M., Assohei, O.,"Comparative study of the efficacy of three coagulants in treating dairy factory waste water", International Jounal of Dairy Technology, 8: 58–83, (2005).
  • [10] Adhikari, U., Harrigan, T., Reinhold, D.M., "Use of duckweed-based constructed wetlands for nutrient recovery and pollutant reduction from dairy wastewater", Ecological Engineering, 78: 6–14, (2015).
  • [11] Gavala, H.N., Kopsinis, H., Skiadas, I.V., Stamatelatou, K., Lyberatos, G., "Treatment of dairy wastewater using an upflow anaerobic sludge blanket reactor". Journal Of Agrcultural Engineering Research, 73: 59-63, (1999).
  • [12] Neto, S.A., Magri, T.C., Silva, G.M., Andrade, A.R., "Treatment of waste dye by electroflocculation: an experiment for undergraduate in chemistry". Quimica Nova, 34: 1468-1471.(2011).
  • [13] Garcha, S., Kaur, N., Brar, S.K., "Aerobic granulation strategy for the treatment of dairy waste water", Indian Journal of Dairy Science, 67: 1–5, (2014).
  • [14] Manh, L.D., "Bioremediation of vegetable oil and grease from polluted wastewater in dairy factory", Journal of Science Education Technology, 24: 56–62, (2014).
  • [15] Janczukowicz, W., Zielinski, M., Debowski, M., "Biodegradability evaluation of dairy effluents originated in selected sections of dairy production", Bioresource Technology, 99: 4199–4205, (2007).
  • [16] Garcha, S., Verma, N., Brar, S.K., "Comparative study on pollution potential of dairy wastewater generated by organized and unorganized sector", Asian Journal of Microbiology Biotechnology Environment Science, 16: 1051–1056, (2014).
  • [17] Koch, K., Drewes, J.E., "Alternative approach to estimate the hydrolysis rate constant of particulate material from batch data", Applied Energy, 120: 11-15, (2014).
  • [18] Çakir, F., Stenstrom, M., "Greenhouse gas production: A comparison between aerobicand anaerobic wastewater treatment technology", Department of Environmental Engineering Sciences, University of Florida,Gainesville, 39: 4197-4203, (2005).
  • [19] Henriksen, M., Bjerketvedt, D., Vaagsaether, K., Gaathaug, A. V., Skjold, T., Middha, P., "Accidental hydrogen release in a gas chromatograph laboratory: A case study". International Journal of Hydrogen Energy, 42(11): 7651-7656, (2017).
  • [20] Østgaard, K., Kowarz, V., Shuai, W., Henry, I. A., Sposob, M., Haugen, H. H., Bakke, R., Syringe test screening of microbial gas production activity: Cases denitrification and biogas formation. Journal of Microbiological Methods, 132: 119-124, (2017).
  • [21] Martin, A., Borja, R., Garcia, I., & Fiestas, J. A., "Kinetics of methane production from olive mill wastewater", Process Biochemistry, 26(2): 101-107, (1991).
  • [22] Riaño, B., Molinuevo, B., García-González, M. C., "Potential for methane production from anaerobic co-digestion of swine manure with winery wastewater", Bioresource Technology, 102(5): 4131-4136, (2011).
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Afşın Yusuf Çetinkaya

Publication Date June 1, 2018
Submission Date September 17, 2017
Published in Issue Year 2018

Cite

APA Çetinkaya, A. Y. (2018). Süt Endüstrisi Atıksuyunun Biyometanizayon Potansiyelinin İncelenmesi. Politeknik Dergisi, 21(2), 457-460. https://doi.org/10.2339/politeknik.403974
AMA Çetinkaya AY. Süt Endüstrisi Atıksuyunun Biyometanizayon Potansiyelinin İncelenmesi. Politeknik Dergisi. June 2018;21(2):457-460. doi:10.2339/politeknik.403974
Chicago Çetinkaya, Afşın Yusuf. “Süt Endüstrisi Atıksuyunun Biyometanizayon Potansiyelinin İncelenmesi”. Politeknik Dergisi 21, no. 2 (June 2018): 457-60. https://doi.org/10.2339/politeknik.403974.
EndNote Çetinkaya AY (June 1, 2018) Süt Endüstrisi Atıksuyunun Biyometanizayon Potansiyelinin İncelenmesi. Politeknik Dergisi 21 2 457–460.
IEEE A. Y. Çetinkaya, “Süt Endüstrisi Atıksuyunun Biyometanizayon Potansiyelinin İncelenmesi”, Politeknik Dergisi, vol. 21, no. 2, pp. 457–460, 2018, doi: 10.2339/politeknik.403974.
ISNAD Çetinkaya, Afşın Yusuf. “Süt Endüstrisi Atıksuyunun Biyometanizayon Potansiyelinin İncelenmesi”. Politeknik Dergisi 21/2 (June 2018), 457-460. https://doi.org/10.2339/politeknik.403974.
JAMA Çetinkaya AY. Süt Endüstrisi Atıksuyunun Biyometanizayon Potansiyelinin İncelenmesi. Politeknik Dergisi. 2018;21:457–460.
MLA Çetinkaya, Afşın Yusuf. “Süt Endüstrisi Atıksuyunun Biyometanizayon Potansiyelinin İncelenmesi”. Politeknik Dergisi, vol. 21, no. 2, 2018, pp. 457-60, doi:10.2339/politeknik.403974.
Vancouver Çetinkaya AY. Süt Endüstrisi Atıksuyunun Biyometanizayon Potansiyelinin İncelenmesi. Politeknik Dergisi. 2018;21(2):457-60.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.