Research Article
BibTex RIS Cite

İnşaat Sektöründe Kullanılan Yalıtım Malzemelerinin Isı ve Ses Yalıtımı Açısından Değerlendirilmesi

Year 2018, , 299 - 320, 01.06.2018
https://doi.org/10.2339/politeknik.407257

Abstract

Makalenin amacı inşaat sektörü için
üç alanı kapsayan: geleneksel, alternatif ve gelişmiş yalıtım malzemelerini
dikkate alarak yalıtım malzemelerine genel bir bakış sağlamaktır. Makalenin
birinci ve ikinci bölümünde ısı ve ses yalıtımı ile ilgili mevcut durum ve
literatürde yapılmış olan çalışmalar ele alınmıştır. Üçüncü bölümde ısı ve ses
yalıtımı için yalıtım malzemelerinde bulunması gereken özellikler, kriterler ve
malzeme özelliklerinin değerlendirilmesi için başlıca uluslararası standartlar
ele alınmıştır. Dördüncü bölümde mevcut yalıtım malzemeleri sınıflandırılarak
ısıl ve akustik özellikleri, su buharı direnci, yangın direnci ve çevresel
özellikler dikkate alınarak incelenmiştir. 
Beşinci bölümde ısı ve ses yalıtımı için mevcut yalıtım malzemeleri dikkate
alınarak gelecekte yapılacak olan çalışmalara yönelik değerlendirmelerde
bulunulmuştur.



Bu değerlendirmelere göre Türkiye
enerji konusunda olduğu gibi yalıtım malzemeleri konusunda da ağırlıklı olarak
dışa bağımlıdır. Bu konuda dışa bağımlılığı giderebilecek, rekabet gücü yüksek
malzeme ve teknolojilerinin geliştirilmesi çok önemlidir. Literatürdeki
çalışmalar genel olarak değerlendirildiğinde uygun malzeme ve bağlayıcılar
kullanıp gerekli işlemler yapıldığında farklı maddelerden elde edilen yeni nesil
kompozit yalıtım malzemelerinin istenen yalıtım performansı özelliklerini
sağlayabileceği öngörülmüştür.

References

  • [1] Özkan D.B., Onan C., Erdem S., “Yalıtım malzemesi kalınlığının ısı yalıtımına etkisi”, Mühendislik Ve Fen Bilimleri Dergisi, Sigma 27: 190-196, (2009).
  • [2] İzoder., (Isı, su ve Ses İzolasyoncuları Derneği), T.C. Bayındırlık ve İskan Bakanlığı Yapı Denetim Kuruluşları Yalıtım Semineri, (2003).
  • [3] P. Ricciardi P., Belloni E., Cotana F., “Innovative panels with recycled materials: Thermal and acoustic performance and Life Cycle Assessment”, Applied Energy, 134:150–162, (2014).
  • [4] Papadopoulos A.M., “State of the art in thermal insulation materials and aims for future developments”, Energy and Buildings, 37: 77–86, (2005).
  • [5] Jelle B.P., “Traditional, state-of-the-art and future thermal building insulation materials and solutions – Properties, requirements and possibilities”, Energy and Buildings, 43: 2549–2563, (2011).
  • [6] Shastri D., Kim S.H., “A new consolidation process for expanded perlite particles”, Construction and Building Materials, 60: 1–7, (2014).
  • [7] Baetens R., Jelle BP., Gustavsen A., “Aerogel insulation for building applications: a state-of-the-art review”, Energy Build, 43: 761–9, (2011).
  • [8] Zukowski M., Haese G., “Experimental and numerical investigation of a hollow brick filled with perlite insulation”, Energy Build, 42:1402–8, (2010).
  • [9] Alam M., Singh H., Brunner S., Naziris C., “Experimental characterisation and evaluation of the thermo-physical properties of expanded perlite-Fumed silica composite for effective vacuum insulation panel (VIP) core”, Energy and Buildings, 69: 442–450, (2014).
  • [10] Pichor W., Janiec A., “Thermal stability of expanded perlite modified by mullite”, Ceramics International, 35: 527–530, (2009).
  • [11] Lu Z., Xu B., Zhang J., Zhu Y., Sun G., Li Z., “Preparation and characterization of expanded perlite/paraffin composite as form-stable phase change material”, Solar Energy, 108: 460–466, (2014)
  • [12] Yılmazer S., Özdeniz M.B., “The effect of moistrue content on sound absorption of expanded perlite plates”, Building and Enviroment, 40: 311-318, (2005).
  • [13] Vaou V., Panias D., “Thermal insulating foamy geopolymers from perlite”, Minerals Engineering, 23: 1146–1151, (2010).
  • [14] Celik A.G., Depci T., Kılıc A.M., “New lightweight colemanite-added perlite brick and comparison of its physicomechanical properties with other commercial lightweight materials”, Construction and Building Materials, 62, 59–66, (2014).
  • [15] Liu W.V., Apel D.B., Bindiganavile V.S., “Thermal properties of lightweight dry-mix shotcrete containing expanded perlite aggregate”, Cement & Concrete Composites, 53: 44–51, (2014).
  • [16] Abidi S., Nait-Ali B., Joliff Y., Favotto C., “Impact of perlite, vermiculite and cement on the thermal conductivity of a plaster composite material: Experimental and numerical approaches”, Composites: Part B, 68: 392–400, (2015).
  • [17] Gaoa T., Sandberg L.I.C., Jelle B.P., “Nano Insulation Materials: Synthesis and Life Cycle Assessment”, Procedia CIRP, 15: 490 – 495, (2014).
  • [18] Bajraktari E., Lechleitner J., Mahdavi A., “Estimating the sound insulation of double facades with openings for natural ventilation”, Energy Procedia, 78: 140 – 145, (2015).
  • [19] Nurzyński J., “Is Thermal Resistance Correlated With Sound Insulation?”, Energy Procedia, 78: 152 – 157, ( 2015).
  • [20] Arifuzzaman M., Sung Kim H.S., “Development of New Perlite/Sodium Silicate Composites”, International Conference on Mechanical, Industrial and Energy Engineering, Khulna, Bangladesh, 26-27, (2014).
  • [21] Arifuzzaman M., Sung Kim H.S., “Novel mechanical behaviour of perlite/sodium silicate composites”, Construction and Building Materials, 93: 230–240, (2015).
  • [22] Skubic B., Lakner M., Plazl I., “Sintering Behavior of Expanded Perlite Thermal Insulation Board: Modeling and Experiments”, Industrial & Engineering Chemistry Research, 53: 10244–10249, (2013).
  • [23] Skubic B., Lakner M., Plazl I., “Microwave Drying of Expanded Perlite Insulation Board”, Industrial & Engineering Chemistry Research, 51: 3314–3321, (2012).
  • [24] Bostancıoğlu E., “Mevcut Binalarda Yapılan Ekolojik İyileştirmelerin Enerji Kazancı”, The Turkish Online Journal of Design Art and Communication, 2:15-24, (2011).
  • [25] Sun D., Wang L., “Utilization of paraffin/expanded perlite materials to improve mechanical and thermal properties of cement mortar”, Construction and Building Materials, 101: 791–796, (2015).
  • [26] Güner Ç., “Gürültünün Sağlık Üzerine Etkileri”, Sürekli Tıp Eğitimi Dergisi, 9: 251-253, (2000).
  • [27] Topçu İ.B., Işikdağ B., “Effect of expanded perlite aggregate on the properties of lightweight concrete”, Journal of Materials Processing Technology, 204: 34–38, (2008).
  • [28] Anonim, “Çevresel Gürültünün Değerlendirilmesi ve Yönetimi Yönetmeliği”, 04.06.2010 Tarih ve 27601 Sayılı Resmi Gazete, Ankara, (2010).
  • [29] Demirkale S.Y., Aşcıgil M., “Sağlıklı kentlerle ve yapılarla ilgili Türkiye’nin gürültü politikası”, VIII. Ulusal Tesisat Mühendisliği Kongresi, İzmir, 267-285, (2007).
  • [30] He Y., “Rapid thermal conductivity measurement with a hot disk sensor Part 1. Theoretical considerations”, Thermochimica Acta 436: 122–129, (2005).
  • [31] Jannot Y., Degiovanni A., Payet G., “Thermal conductivity measurement of insulating materials with a three layers device”, International Journal of Heat and Mass Transfer, 52: 1105–1111, (2009).
  • [32] Schiavoni S., D'Alessandro F., Bianchi F., Asdrubali F., “Insulation materials for the building sector: A review and comparative analysis”, Renewable and Sustainable Energy Reviews, 62: 988–1011, (2016).
  • [33] EN 12664, “Thermal performance of building materials and products – determination of thermal resistance by means of guarded hot plate and heat flow meter methods – dry and moist products of medium and low thermal resistance”, European Committee for Standardization, (2001).
  • [34] EN 12667, “Thermal performance of building materials and products – determination of thermal resistance by means of guarded hot plate and heat flow meter methods – products of high and medium thermal resistance”, European Committee for Standardization, (2001).
  • [35] EN 12939, “Thermal performance of building materials and products – determination of thermal resistance by means of guarded hot plate and heat flow meter methods – thick products of high and medium thermal resistance”, European Committee for Standardization, (2000).
  • [36] ASTM C518-10, “Standard test method for steady-state thermal transmission properties by means of the heat flow meter apparatus”, American Society for Testing and Materials, (2010).
  • [37] ASTM C177-13, “Standard test method for steady-state heat flux measurements and thermal transmission properties by means of the guarded-hot-plate apparatus”, American Society for Testing and Materials, (2013).
  • [38] ISO 8990, “Thermal insulation – determination of steady-state thermal transmission properties – calibrated and guarded hot box”, International Organization for Standardization, (2013).
  • [39] EN 1602, “Thermal insulating products for building applications. Determination of the apparent density”, European Committee for Standardization, (2013).
  • [40] ASTM C303-10 “Standard test method for dimensions and density of preformed block and board-type thermal insulation”, American Society for Testing and Materials, (2016).
  • [41] ISO 11357-4, “Plastics. Differential scanning calorimetry (DSC). Determination of specific heat capacity”, International Organization for Standardization, (2014).
  • [42] ASTM 1269-11, “Standard test method for determining specific heat capacity by differential scanning calorimetry”, American Society for Testing and Materials, (2011).
  • [43] ISO 22007-1, “Plastics –determination of thermal conductivity and thermal diffusivity – Part 1: General principles”, International Organization for Standardization, (2009).
  • [44] ISO 22007-2, “Plastics –determination of thermal conductivity and thermal diffusivity – Part 2: Transient plane heat source (hot disc) method”, International Organization for Standardization, (2008).
  • [45] ISO 22007-3, “Plastics – determination of thermal conductivity and thermal diffusivity – Part 3: Temperature wave analysis method”, International Organization for Standardization, (2008).
  • [46] ISO 22007-4, “Plastics – determination of thermal conductivity and thermal diffusivity – Part 4: Laser flash method”, International Organization for Standardization, (2008).
  • [47] ISO 6946, “Building components and building elements – thermal resistance and thermal transmittance – calculation method”, International Organization for Standardization, (2007).
  • [48] Toydemir N., Gürdal, E., Tanaçan L., “Yapı Elemanında Malzeme Tasarımı”, Literatür Yayıncılık, İstanbul, (2000).
  • [49] Ülker S., “Isı Yalıtım Malzemelerinin Özelliklerinin Uygulamaya Etkileri”, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, (2009).
  • [50] Yılmaz H. K., “Binalarda Diş Duvarlarda Kullanılan Isı Yalıtım Kaplamalarının Enerji Korunum Performansları Açısından İncelenmesi”, Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, (2009).
  • [51] Al-Homoud M.S., “Performance characteristics and practical applications of common building thermal insulation materials”, Building and Environment, 40: 353–366, (2005).
  • [52] ISO 717-1, “Acoustics – rating of sound insulation in buildings and of building elements – Part 1: Airborne sound insulation”, International Organization for Standardization, (2013).
  • [53] ISO 10140, “Acoustics – laboratory measurement of sound insulation of building elements”, International Organization for Standardization, (2010).
  • [54] EN 12354-1, “Building acoustics – estimation of acoustic performance of buildings from the performance of elements – Part 1: Airborne sound insulation between rooms”, European Committee for Standardization, (2000).
  • [55] ISO 16283-1, “Acoustics – field measurement of sound insulation in buildings and of building elements – Part 1: Airborne sound insulation”, International Organization for Standardization, (2014).
  • [56] ISO 717-2, “Acoustics – rating of sound insulation in buildings and of building elements – Part 2: Impact sound insulation”, International Organization for Standardization, (2013).
  • [57] EN 12354-2, “Building acoustics – estimation of acoustic performance of buildings from the performance of elements – Part 2: Impact sound insulation between rooms”, European Committee for Standardization, (2000).
  • [58] ISO 16283-2, “Acoustics – field measurement of sound insulation in buildings and of building elements – Part 2: Impact sound insulation”, International Organization for Standardization, (2015).
  • [59] ISO 9052-1, “Acoustics – determination of dynamic stiffness – Part 1: Materials used under floating floors in dwellings”, International Organization for Standardization, (1989).
  • [60] ISO 354, “Acoustics – measurement of sound absorption in a reverberation room”, International Organization for Standardization, (2003).
  • [61] ASTM C423-09a, “Standard test method for sound absorption and sound absorption coefficients by the reverberation room method”, American Society for Testing and Materials, (2009).
  • [62] ISO 10534-2, “Acoustics – determination of sound absorption coefficient and impedance in impedance tubes – Part 2: Transfer-function method”, International Organization for Standardization, (1998).
  • [63] Vidinlimen G.T., “Otomotiv Endüstrisinde Kullanılan Gözenekli Malzemelerin Akustik Özellikleri ve Analizi”, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, (2010).
  • [64] Cox, T. J., D’Antonio, P., “Acoustic Absorbers and Diffusers” Spon Press, London and New York, (2005).
  • [65] Ravindran A., “Investigation of Inverse Acoustical Characterization of Porous Materials Used in aircraft Noise Control Application”, Master of Science Thesis, Wichita State University, (2007).
  • [66] Skinner, C., Peters, J., and Vandenbroeck, J., Acoustic Absorbers: A third way for the management of sound in automobiles, International Urethanes Technology Exhibition and Conference UTECH Europe, Maastricht, Netherlands, 28-30, (2006).
  • [67] Fangueiro R. “Fibrous and composite materials for civil engineering applications” Woodhead Publishing Limited, Cambridge, (2011).
  • [68] Kirbiyik E., “Ses ve Isı Yalıtımlı Ekolojik Yapı Malzemelerinin Incelenmesi ve Trakya Bölgesinde Yetiştirilen Ayçiçeği Bitkisinin Yalıtım Malzemesi Olarak Araştırılması”, Yüksek Lisans Tezi, Trakya Üniversitesi Fen Bilimleri Enstitüsü, (2012).
  • [69] Woolley, T., Kimmins, S., Harrison, P., Harrison, R., “Green Building Handbook”, Spon Press, Manchester, 2005.
  • [70] Tatematsu K., Hirota T., Suzuki H., Taniguchi M., Nunoi Y., Uzawa T., “Influence of temperature and moisture on aging of glass wool”, Journal of Environmental Engineering, 79: 753–62, (2014).
  • [71] Lakatos A., Kalmár F., “Analysis of water sorption and thermal conductivity of expanded polystyrene insulation materials”, Building Services Engineering Research and Technology, 34:407–16, (2013).
  • [72] Vo C.V., Bunge F., Duffy J., Hood L., “Advances in thermal insulation of extruded polystyrene foams”, Cellular Polymers, 30:137–56, (2011).
  • [73] Zhao C., Yan Y., Hu Z., Li L., Fan X., “Preparation and characterization of granular silica aerogel/polyisocyanurate rigid foam composites”, Construction and Building Materials, 93: 309–16, (2015).
  • [74] Pescari S., Tudor D., Tölgyi S., Maduta C., “Study concerning the thermal insulation panels with double-side anti-condensation foil on the exterior and polyurethane foam or polyisocyanurate on the interior”, Key Engineering Materials, 660: 244–8, (2015).
  • [75] Hurtado PL., Rouilly A., Vandenbossche V., Raynaud C., “A review on the properties of cellulose fibre insulation”, Building and Environment, 96: 170–7, (2016).
  • [76] Asdrubali F., Schiavoni S., Horoshenkov KV., “Review of sustainable materials for acoustic applications”, Journal of Building Acoustics, 19: 283–312, (2012).
  • [77] Maaloufa Y., Mounir S., Khabbazi A., Kettar J., Khaldoun A., “Thermal characterization of materials based on clay and granular: cork or expanded perlite”, Energy Procedia, 74: 1150–61, (2015).
  • [78] Limam A., Zerizer A., Quenard D., Sallee H., Chenak A., “Experimental thermal characterization of bio-based materials (Aleppo Pine wood, cork and their composites) for building insulation”, Energy and Buildings, 116: 89–95, (2016).
  • [79] Kawasaki T., Zhang M., Kawai S., “Manufacture and properties of ultra-low density fiberboard”, Journal of Wood Science, 44:354–60, (1998).
  • [80] Troppová E., Švehlík M., Tippner J., Wimmer R., “Influence of temperature and moisture content on the thermal conductivity of wood-based fibreboards”, Materials and Structures, 48: 4077–83, (2015).
  • [81] Pargana N., Pinheiro MD., Silvestre JD., De Brito J., “Comparative environmental life cycle assessment of thermal insulation materials of buildings”, Energy and Buildings, 82: 466–81, (2014).
  • [82] Del Coz Díaz J.J., Álvarez Rabanal F.P., García Nieto P.J., Domínguez Hernández J., Rodríguez Soria B., Pérez-Bella J.M., “Hygrothermal properties of lightweight concrete: experiments and numerical fitting study”, Construction and Building Materials, 40: 543–55, (2013).
  • [83] Asdrubali F., Horoshenkov K.V., “The acoustic properties of expanded clay granulates”, Building Acoustics, 9: 85–98, (2002). [84] Sutcu M., “Influence of expanded vermiculite on physical properties and thermal conductivity of clay bricks”, Ceramics International, 41: 2819–2827, (2015).
  • [85] Schackow A., Effting C., Folgueras M.V., Güths S., Mendes G.A., “Mechanical and thermal properties of lightweight concretes with vermiculite and EPS using air-entraining agent”, Construction and Building Materials, 57: 190–197 (2014).
  • [86] Maderuelo-Sanz R., Nadal-Gisbert A.V., Crespo-Amorós J.E., Barrigón Morillas J.M., Parres-García F., Juliá Sanchis E., “Influence of the microstructure in the acoustical performance of consolidated lightweight granular materials”, Acoustics Australia, 44:149–157, (2016).
  • [87] Fassi A., Maina L., “L'isolamento ecoefficiente. Guida all'uso dei materiali naturali” Edizioni Ambiente; Milano, (2009).
  • [88] ISO/FDIS 10456, “Building materials and products — hygrothermal properties — tabulated design values and procedures for determining declared and design thermal values”, International Organization for Standardization, (2007).
  • [89] Suvorov S.A., Skurikhin V.V., “Vermiculite — a promising material for hightemperature heat insulators”, Refractories and Industrial Ceramics, 44: 186–93, (2003).
  • [90] Maderuelo R., Segura J.G., Nadal A, Julia E, Crespo JE, Gadea JM., “Acoustical properties of porous absorbers made from perlite”, International Conference Sustainable Materials Science and Technology, Paris, 22-25, (2015).
  • [91] Kymäläinen H.R., Sjöberg A.M., “Flax and hemp fibres as raw materials for thermal insulations” Building and Environment, 43: 1261–1269, (2008).
  • [92] Zach J., Hroudova J., Brožovskýc J., Krejzad Z., Gailiuse A., “Development of thermal insulating materials on natural base for thermal insulation systems” Procedia Engineering, 57:1288–1294, (2013).
  • [93] Korjenic A., Petránek V., Zach J., Hroudová J., “Development and performance evaluation of natural thermal-insulation materials composed of renewable resources”, Energy and Buildings, 43: 2518–2523, (2011).
  • [94] Glé P., Gourdon E., Arnaud L., “Acoustical properties of materials made of vegetable particles with several scales of porosity” Applied Acoustics, 72: 249–259, (2011).
  • [95] Xu J., Sugawara R., Widyorini R., Han G., Kawai S., “Manufacture and properties of low-density binderless particleboard from Kenaf core”, Journal of Wood Science, 50: 62–7, (2004).
  • [96] D'Alessandro F., Pispola G., “Sound absorption properties of sustainable fibrous materials in an enhanced reverberation room”, International Congress on Noise Control Engineering, Rio de Janeiro, 2359-2368, (2005).
  • [97] El Hajja N., Mboumba-Mamboundou B., Dheilly R-M., Aboura Z., Benzeggagh M., Queneudec M., “Development of thermal insulating and sound absorbing agro-sourced materials from auto linked flax-tows”, Industrial Crops and Products, 34: 921–928, (2011).
  • [98] Kauriinvaha E., Viljanen M., Pasila A., Kymäläinen H-R., Pehkonen A., “Bio-fiber from field to insulation of building”, Helsinki University of Technology, Laboratory of Structural Engineering and Building Physics, Publication 117; (2001).
  • [99] Ballagh K.O., “Acoustic properties of wall”, Applied Acoustics, 48:101–120, (1996).
  • [100] Zach J., Korjenic A., Petránek V., Hroudová J., Bednar T., “Performance evaluation and research of alternative thermal insulations based on sheep wool”, Energy and Buildings, 49: 246–253, (2012).
  • [101] Manohar K., Ramlakhan D., Kochar G., Haldar S., “Biodegradable fibrous thermal insulation”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 28: 45–47, (2015).
  • [102] Manohar K., “Experimental investigation of building thermal insulation from agricultural by-products”, British Journal of Applied Science & Technology, 2:227–39, (2012).
  • [103] Panyakaew S., Fotios S., “New thermal insulation boards made from coconut husk and bagasse”, Energy and Buildings, 43:1732–9, (2011).
  • [104] Asdrubali F., Baldinelli G., D'Alessandro F., Schiavoni S., Kenny J.M., Iannoni A., “Manufacturing process optimization of resilient materials made from recycled tyre granules”, 16th International Congress on Sound and Vibration, Krakow, 1985-1992, (2009).
  • [105] Asdrubali F., D'Alessandro F., “Impact sound insulation and viscoelastic properties of resilient materials made from recycled tyre granules”, International Journal of Acoustic and Vibration, 16:119–125, (2011).
  • [106] Benkreira H., Khan A., Horoshenkov KV., “Sustainable acoustic and thermal insulation materials from elastomeric waste residues”, Chemical Engineering Science, 66:4157–4171, (2011).
  • [107] Asdrubali F., D'Alessandro F., Schiavoni S., “Sound absorbing properties of materials made of rubber crumbs”, Acoustics’08, Paris, (2008).
  • [108] Zach J., Hroudova J., “Utilization of technical hemp for thermal insulating materials production”, 2nd international conference on suitable construction materials and technologies, Ancona, (2010).
  • [109] Asdrubali F., Pisello AL., D'Alessandro F., Bianchi F., Fabiani C., Cornicchia M,. “Experimental and numerical characterization of innovative cardboard based panels: thermal and acoustic performance analysis and life cycle assessment”, Building and Environment, 95:145–59, (2016).
  • [110] Baetens R., Jelle B.P., Thue J.V., Tenpierik M.J., Grynning S., Uvsløkk S., “Vacuum insulation panels for building applications: a review and beyond”, Energy and Buildings, 42:147–72, (2010).
  • [111] Alam M, Singh H, Limbachiya MC. “Vacuum Insulation Panels (VIPs) for building construction industry a review of the contemporary developments and future directions”, Applied Energy, 88:3592–3602, (2011).
  • [112] Baetens R., Jelle B.P., Gustavsend A., Grynninga S., “Gas-filled panels for building applications: a state-of-the-art review”, Energy and Buildings, 42:1969–75, (2010).
  • [113] Griffith B., Türler D., Arasteh D., “Optimizing the effective conductivity and cost of gas-filled panel thermal insulations”, 22nd International Thermal Conductivity Conference, Arizona State University, (1993).
  • [114] Dorcheh A.S., Abbasi H., “Silica aerogel; synthesis, properties and characterization”, Journal of Materials Processing Technology, 199: 10–26, (2008).
  • [115] Van Bommel M.J., den Engelsen C.W., van Miltenburg J.C., “A thermoporometry study of fumed silica/aerogel composites”, Journal of Porous Materials, 4:143–150, (1997).
  • [116] Baetens R., Jelle B.P., Gustavsen A., “Aerogel insulation for building applications: a state-of-the-art review” Energy and Buildings, 43:761–769, (2011).
  • [117] Neugebauer A., Chen K., Tang A., Allgeier A., Glicksman L.R., Gibson L.J., “Thermal conductivity and characterization of compacted, granular silica aerogel”, Energy and Buildings, 79:47–57, (2014).
  • [118] Berardi U., “The development of a monolithic aerogel glazed window for an energy retrofitting project”, Applied Energy, 154:603–615, (2015).
  • [119] Ricciardi P., Gibiat V., Hooley A., “Multilayer absorbers of silica aerogel”, In: Proceedings of Forum Acusticum, Sevilla, Spain, (2002).
  • [120] Hayase G., Kanamori K., Abe K., Yano H., Maeno A., Kaji H., “Polymethylsilsesquioxane -cellulose nanofiber biocomposite aerogels with high thermal insulation, bendability, and superhydrophobicity”, Applied Materials & Interfaces, 6:9466–9471, (2014).

Evaluation of Insulation Materials Used in Construction Sector Based on Heat and Sound Insulation

Year 2018, , 299 - 320, 01.06.2018
https://doi.org/10.2339/politeknik.407257

Abstract

The purpose of the paper is to provide an overview of
the insulation materials, taking into including three areas for the
construction sector: traditional, alternative and advanced insulation
materials. In the first and second part of the paper, the current state of heat
and sound insulation and the studies made in the literature are discussed. In
the third section, properties and criteria to be found in insulation materials
for heat and sound insulation and the main international standards for
evaluating material properties are dicussed. In the fourth chapter, existing
insulation materials are classified and their thermal and acoustical properties
are examined by taking into consideration water vapor resistance, fire
resistance and environmental properties. In the fifth chapter, considering the
existing insulation materials for heat and sound insulation, evaluations were
made for future works. According to these evaluations, Turkey is predominantly
be dependent on outside on insulation materials as well as on energy. The
development of highly competitive materials and technologies is crucial in this
regard. The studies in the literature are generally predicted to provide the
desired insulation performance characteristics of the new generation composite
insulation materials obtained from different materials when appropriate
materials and binders are used and the necessary operations are carried out.

References

  • [1] Özkan D.B., Onan C., Erdem S., “Yalıtım malzemesi kalınlığının ısı yalıtımına etkisi”, Mühendislik Ve Fen Bilimleri Dergisi, Sigma 27: 190-196, (2009).
  • [2] İzoder., (Isı, su ve Ses İzolasyoncuları Derneği), T.C. Bayındırlık ve İskan Bakanlığı Yapı Denetim Kuruluşları Yalıtım Semineri, (2003).
  • [3] P. Ricciardi P., Belloni E., Cotana F., “Innovative panels with recycled materials: Thermal and acoustic performance and Life Cycle Assessment”, Applied Energy, 134:150–162, (2014).
  • [4] Papadopoulos A.M., “State of the art in thermal insulation materials and aims for future developments”, Energy and Buildings, 37: 77–86, (2005).
  • [5] Jelle B.P., “Traditional, state-of-the-art and future thermal building insulation materials and solutions – Properties, requirements and possibilities”, Energy and Buildings, 43: 2549–2563, (2011).
  • [6] Shastri D., Kim S.H., “A new consolidation process for expanded perlite particles”, Construction and Building Materials, 60: 1–7, (2014).
  • [7] Baetens R., Jelle BP., Gustavsen A., “Aerogel insulation for building applications: a state-of-the-art review”, Energy Build, 43: 761–9, (2011).
  • [8] Zukowski M., Haese G., “Experimental and numerical investigation of a hollow brick filled with perlite insulation”, Energy Build, 42:1402–8, (2010).
  • [9] Alam M., Singh H., Brunner S., Naziris C., “Experimental characterisation and evaluation of the thermo-physical properties of expanded perlite-Fumed silica composite for effective vacuum insulation panel (VIP) core”, Energy and Buildings, 69: 442–450, (2014).
  • [10] Pichor W., Janiec A., “Thermal stability of expanded perlite modified by mullite”, Ceramics International, 35: 527–530, (2009).
  • [11] Lu Z., Xu B., Zhang J., Zhu Y., Sun G., Li Z., “Preparation and characterization of expanded perlite/paraffin composite as form-stable phase change material”, Solar Energy, 108: 460–466, (2014)
  • [12] Yılmazer S., Özdeniz M.B., “The effect of moistrue content on sound absorption of expanded perlite plates”, Building and Enviroment, 40: 311-318, (2005).
  • [13] Vaou V., Panias D., “Thermal insulating foamy geopolymers from perlite”, Minerals Engineering, 23: 1146–1151, (2010).
  • [14] Celik A.G., Depci T., Kılıc A.M., “New lightweight colemanite-added perlite brick and comparison of its physicomechanical properties with other commercial lightweight materials”, Construction and Building Materials, 62, 59–66, (2014).
  • [15] Liu W.V., Apel D.B., Bindiganavile V.S., “Thermal properties of lightweight dry-mix shotcrete containing expanded perlite aggregate”, Cement & Concrete Composites, 53: 44–51, (2014).
  • [16] Abidi S., Nait-Ali B., Joliff Y., Favotto C., “Impact of perlite, vermiculite and cement on the thermal conductivity of a plaster composite material: Experimental and numerical approaches”, Composites: Part B, 68: 392–400, (2015).
  • [17] Gaoa T., Sandberg L.I.C., Jelle B.P., “Nano Insulation Materials: Synthesis and Life Cycle Assessment”, Procedia CIRP, 15: 490 – 495, (2014).
  • [18] Bajraktari E., Lechleitner J., Mahdavi A., “Estimating the sound insulation of double facades with openings for natural ventilation”, Energy Procedia, 78: 140 – 145, (2015).
  • [19] Nurzyński J., “Is Thermal Resistance Correlated With Sound Insulation?”, Energy Procedia, 78: 152 – 157, ( 2015).
  • [20] Arifuzzaman M., Sung Kim H.S., “Development of New Perlite/Sodium Silicate Composites”, International Conference on Mechanical, Industrial and Energy Engineering, Khulna, Bangladesh, 26-27, (2014).
  • [21] Arifuzzaman M., Sung Kim H.S., “Novel mechanical behaviour of perlite/sodium silicate composites”, Construction and Building Materials, 93: 230–240, (2015).
  • [22] Skubic B., Lakner M., Plazl I., “Sintering Behavior of Expanded Perlite Thermal Insulation Board: Modeling and Experiments”, Industrial & Engineering Chemistry Research, 53: 10244–10249, (2013).
  • [23] Skubic B., Lakner M., Plazl I., “Microwave Drying of Expanded Perlite Insulation Board”, Industrial & Engineering Chemistry Research, 51: 3314–3321, (2012).
  • [24] Bostancıoğlu E., “Mevcut Binalarda Yapılan Ekolojik İyileştirmelerin Enerji Kazancı”, The Turkish Online Journal of Design Art and Communication, 2:15-24, (2011).
  • [25] Sun D., Wang L., “Utilization of paraffin/expanded perlite materials to improve mechanical and thermal properties of cement mortar”, Construction and Building Materials, 101: 791–796, (2015).
  • [26] Güner Ç., “Gürültünün Sağlık Üzerine Etkileri”, Sürekli Tıp Eğitimi Dergisi, 9: 251-253, (2000).
  • [27] Topçu İ.B., Işikdağ B., “Effect of expanded perlite aggregate on the properties of lightweight concrete”, Journal of Materials Processing Technology, 204: 34–38, (2008).
  • [28] Anonim, “Çevresel Gürültünün Değerlendirilmesi ve Yönetimi Yönetmeliği”, 04.06.2010 Tarih ve 27601 Sayılı Resmi Gazete, Ankara, (2010).
  • [29] Demirkale S.Y., Aşcıgil M., “Sağlıklı kentlerle ve yapılarla ilgili Türkiye’nin gürültü politikası”, VIII. Ulusal Tesisat Mühendisliği Kongresi, İzmir, 267-285, (2007).
  • [30] He Y., “Rapid thermal conductivity measurement with a hot disk sensor Part 1. Theoretical considerations”, Thermochimica Acta 436: 122–129, (2005).
  • [31] Jannot Y., Degiovanni A., Payet G., “Thermal conductivity measurement of insulating materials with a three layers device”, International Journal of Heat and Mass Transfer, 52: 1105–1111, (2009).
  • [32] Schiavoni S., D'Alessandro F., Bianchi F., Asdrubali F., “Insulation materials for the building sector: A review and comparative analysis”, Renewable and Sustainable Energy Reviews, 62: 988–1011, (2016).
  • [33] EN 12664, “Thermal performance of building materials and products – determination of thermal resistance by means of guarded hot plate and heat flow meter methods – dry and moist products of medium and low thermal resistance”, European Committee for Standardization, (2001).
  • [34] EN 12667, “Thermal performance of building materials and products – determination of thermal resistance by means of guarded hot plate and heat flow meter methods – products of high and medium thermal resistance”, European Committee for Standardization, (2001).
  • [35] EN 12939, “Thermal performance of building materials and products – determination of thermal resistance by means of guarded hot plate and heat flow meter methods – thick products of high and medium thermal resistance”, European Committee for Standardization, (2000).
  • [36] ASTM C518-10, “Standard test method for steady-state thermal transmission properties by means of the heat flow meter apparatus”, American Society for Testing and Materials, (2010).
  • [37] ASTM C177-13, “Standard test method for steady-state heat flux measurements and thermal transmission properties by means of the guarded-hot-plate apparatus”, American Society for Testing and Materials, (2013).
  • [38] ISO 8990, “Thermal insulation – determination of steady-state thermal transmission properties – calibrated and guarded hot box”, International Organization for Standardization, (2013).
  • [39] EN 1602, “Thermal insulating products for building applications. Determination of the apparent density”, European Committee for Standardization, (2013).
  • [40] ASTM C303-10 “Standard test method for dimensions and density of preformed block and board-type thermal insulation”, American Society for Testing and Materials, (2016).
  • [41] ISO 11357-4, “Plastics. Differential scanning calorimetry (DSC). Determination of specific heat capacity”, International Organization for Standardization, (2014).
  • [42] ASTM 1269-11, “Standard test method for determining specific heat capacity by differential scanning calorimetry”, American Society for Testing and Materials, (2011).
  • [43] ISO 22007-1, “Plastics –determination of thermal conductivity and thermal diffusivity – Part 1: General principles”, International Organization for Standardization, (2009).
  • [44] ISO 22007-2, “Plastics –determination of thermal conductivity and thermal diffusivity – Part 2: Transient plane heat source (hot disc) method”, International Organization for Standardization, (2008).
  • [45] ISO 22007-3, “Plastics – determination of thermal conductivity and thermal diffusivity – Part 3: Temperature wave analysis method”, International Organization for Standardization, (2008).
  • [46] ISO 22007-4, “Plastics – determination of thermal conductivity and thermal diffusivity – Part 4: Laser flash method”, International Organization for Standardization, (2008).
  • [47] ISO 6946, “Building components and building elements – thermal resistance and thermal transmittance – calculation method”, International Organization for Standardization, (2007).
  • [48] Toydemir N., Gürdal, E., Tanaçan L., “Yapı Elemanında Malzeme Tasarımı”, Literatür Yayıncılık, İstanbul, (2000).
  • [49] Ülker S., “Isı Yalıtım Malzemelerinin Özelliklerinin Uygulamaya Etkileri”, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, (2009).
  • [50] Yılmaz H. K., “Binalarda Diş Duvarlarda Kullanılan Isı Yalıtım Kaplamalarının Enerji Korunum Performansları Açısından İncelenmesi”, Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, (2009).
  • [51] Al-Homoud M.S., “Performance characteristics and practical applications of common building thermal insulation materials”, Building and Environment, 40: 353–366, (2005).
  • [52] ISO 717-1, “Acoustics – rating of sound insulation in buildings and of building elements – Part 1: Airborne sound insulation”, International Organization for Standardization, (2013).
  • [53] ISO 10140, “Acoustics – laboratory measurement of sound insulation of building elements”, International Organization for Standardization, (2010).
  • [54] EN 12354-1, “Building acoustics – estimation of acoustic performance of buildings from the performance of elements – Part 1: Airborne sound insulation between rooms”, European Committee for Standardization, (2000).
  • [55] ISO 16283-1, “Acoustics – field measurement of sound insulation in buildings and of building elements – Part 1: Airborne sound insulation”, International Organization for Standardization, (2014).
  • [56] ISO 717-2, “Acoustics – rating of sound insulation in buildings and of building elements – Part 2: Impact sound insulation”, International Organization for Standardization, (2013).
  • [57] EN 12354-2, “Building acoustics – estimation of acoustic performance of buildings from the performance of elements – Part 2: Impact sound insulation between rooms”, European Committee for Standardization, (2000).
  • [58] ISO 16283-2, “Acoustics – field measurement of sound insulation in buildings and of building elements – Part 2: Impact sound insulation”, International Organization for Standardization, (2015).
  • [59] ISO 9052-1, “Acoustics – determination of dynamic stiffness – Part 1: Materials used under floating floors in dwellings”, International Organization for Standardization, (1989).
  • [60] ISO 354, “Acoustics – measurement of sound absorption in a reverberation room”, International Organization for Standardization, (2003).
  • [61] ASTM C423-09a, “Standard test method for sound absorption and sound absorption coefficients by the reverberation room method”, American Society for Testing and Materials, (2009).
  • [62] ISO 10534-2, “Acoustics – determination of sound absorption coefficient and impedance in impedance tubes – Part 2: Transfer-function method”, International Organization for Standardization, (1998).
  • [63] Vidinlimen G.T., “Otomotiv Endüstrisinde Kullanılan Gözenekli Malzemelerin Akustik Özellikleri ve Analizi”, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, (2010).
  • [64] Cox, T. J., D’Antonio, P., “Acoustic Absorbers and Diffusers” Spon Press, London and New York, (2005).
  • [65] Ravindran A., “Investigation of Inverse Acoustical Characterization of Porous Materials Used in aircraft Noise Control Application”, Master of Science Thesis, Wichita State University, (2007).
  • [66] Skinner, C., Peters, J., and Vandenbroeck, J., Acoustic Absorbers: A third way for the management of sound in automobiles, International Urethanes Technology Exhibition and Conference UTECH Europe, Maastricht, Netherlands, 28-30, (2006).
  • [67] Fangueiro R. “Fibrous and composite materials for civil engineering applications” Woodhead Publishing Limited, Cambridge, (2011).
  • [68] Kirbiyik E., “Ses ve Isı Yalıtımlı Ekolojik Yapı Malzemelerinin Incelenmesi ve Trakya Bölgesinde Yetiştirilen Ayçiçeği Bitkisinin Yalıtım Malzemesi Olarak Araştırılması”, Yüksek Lisans Tezi, Trakya Üniversitesi Fen Bilimleri Enstitüsü, (2012).
  • [69] Woolley, T., Kimmins, S., Harrison, P., Harrison, R., “Green Building Handbook”, Spon Press, Manchester, 2005.
  • [70] Tatematsu K., Hirota T., Suzuki H., Taniguchi M., Nunoi Y., Uzawa T., “Influence of temperature and moisture on aging of glass wool”, Journal of Environmental Engineering, 79: 753–62, (2014).
  • [71] Lakatos A., Kalmár F., “Analysis of water sorption and thermal conductivity of expanded polystyrene insulation materials”, Building Services Engineering Research and Technology, 34:407–16, (2013).
  • [72] Vo C.V., Bunge F., Duffy J., Hood L., “Advances in thermal insulation of extruded polystyrene foams”, Cellular Polymers, 30:137–56, (2011).
  • [73] Zhao C., Yan Y., Hu Z., Li L., Fan X., “Preparation and characterization of granular silica aerogel/polyisocyanurate rigid foam composites”, Construction and Building Materials, 93: 309–16, (2015).
  • [74] Pescari S., Tudor D., Tölgyi S., Maduta C., “Study concerning the thermal insulation panels with double-side anti-condensation foil on the exterior and polyurethane foam or polyisocyanurate on the interior”, Key Engineering Materials, 660: 244–8, (2015).
  • [75] Hurtado PL., Rouilly A., Vandenbossche V., Raynaud C., “A review on the properties of cellulose fibre insulation”, Building and Environment, 96: 170–7, (2016).
  • [76] Asdrubali F., Schiavoni S., Horoshenkov KV., “Review of sustainable materials for acoustic applications”, Journal of Building Acoustics, 19: 283–312, (2012).
  • [77] Maaloufa Y., Mounir S., Khabbazi A., Kettar J., Khaldoun A., “Thermal characterization of materials based on clay and granular: cork or expanded perlite”, Energy Procedia, 74: 1150–61, (2015).
  • [78] Limam A., Zerizer A., Quenard D., Sallee H., Chenak A., “Experimental thermal characterization of bio-based materials (Aleppo Pine wood, cork and their composites) for building insulation”, Energy and Buildings, 116: 89–95, (2016).
  • [79] Kawasaki T., Zhang M., Kawai S., “Manufacture and properties of ultra-low density fiberboard”, Journal of Wood Science, 44:354–60, (1998).
  • [80] Troppová E., Švehlík M., Tippner J., Wimmer R., “Influence of temperature and moisture content on the thermal conductivity of wood-based fibreboards”, Materials and Structures, 48: 4077–83, (2015).
  • [81] Pargana N., Pinheiro MD., Silvestre JD., De Brito J., “Comparative environmental life cycle assessment of thermal insulation materials of buildings”, Energy and Buildings, 82: 466–81, (2014).
  • [82] Del Coz Díaz J.J., Álvarez Rabanal F.P., García Nieto P.J., Domínguez Hernández J., Rodríguez Soria B., Pérez-Bella J.M., “Hygrothermal properties of lightweight concrete: experiments and numerical fitting study”, Construction and Building Materials, 40: 543–55, (2013).
  • [83] Asdrubali F., Horoshenkov K.V., “The acoustic properties of expanded clay granulates”, Building Acoustics, 9: 85–98, (2002). [84] Sutcu M., “Influence of expanded vermiculite on physical properties and thermal conductivity of clay bricks”, Ceramics International, 41: 2819–2827, (2015).
  • [85] Schackow A., Effting C., Folgueras M.V., Güths S., Mendes G.A., “Mechanical and thermal properties of lightweight concretes with vermiculite and EPS using air-entraining agent”, Construction and Building Materials, 57: 190–197 (2014).
  • [86] Maderuelo-Sanz R., Nadal-Gisbert A.V., Crespo-Amorós J.E., Barrigón Morillas J.M., Parres-García F., Juliá Sanchis E., “Influence of the microstructure in the acoustical performance of consolidated lightweight granular materials”, Acoustics Australia, 44:149–157, (2016).
  • [87] Fassi A., Maina L., “L'isolamento ecoefficiente. Guida all'uso dei materiali naturali” Edizioni Ambiente; Milano, (2009).
  • [88] ISO/FDIS 10456, “Building materials and products — hygrothermal properties — tabulated design values and procedures for determining declared and design thermal values”, International Organization for Standardization, (2007).
  • [89] Suvorov S.A., Skurikhin V.V., “Vermiculite — a promising material for hightemperature heat insulators”, Refractories and Industrial Ceramics, 44: 186–93, (2003).
  • [90] Maderuelo R., Segura J.G., Nadal A, Julia E, Crespo JE, Gadea JM., “Acoustical properties of porous absorbers made from perlite”, International Conference Sustainable Materials Science and Technology, Paris, 22-25, (2015).
  • [91] Kymäläinen H.R., Sjöberg A.M., “Flax and hemp fibres as raw materials for thermal insulations” Building and Environment, 43: 1261–1269, (2008).
  • [92] Zach J., Hroudova J., Brožovskýc J., Krejzad Z., Gailiuse A., “Development of thermal insulating materials on natural base for thermal insulation systems” Procedia Engineering, 57:1288–1294, (2013).
  • [93] Korjenic A., Petránek V., Zach J., Hroudová J., “Development and performance evaluation of natural thermal-insulation materials composed of renewable resources”, Energy and Buildings, 43: 2518–2523, (2011).
  • [94] Glé P., Gourdon E., Arnaud L., “Acoustical properties of materials made of vegetable particles with several scales of porosity” Applied Acoustics, 72: 249–259, (2011).
  • [95] Xu J., Sugawara R., Widyorini R., Han G., Kawai S., “Manufacture and properties of low-density binderless particleboard from Kenaf core”, Journal of Wood Science, 50: 62–7, (2004).
  • [96] D'Alessandro F., Pispola G., “Sound absorption properties of sustainable fibrous materials in an enhanced reverberation room”, International Congress on Noise Control Engineering, Rio de Janeiro, 2359-2368, (2005).
  • [97] El Hajja N., Mboumba-Mamboundou B., Dheilly R-M., Aboura Z., Benzeggagh M., Queneudec M., “Development of thermal insulating and sound absorbing agro-sourced materials from auto linked flax-tows”, Industrial Crops and Products, 34: 921–928, (2011).
  • [98] Kauriinvaha E., Viljanen M., Pasila A., Kymäläinen H-R., Pehkonen A., “Bio-fiber from field to insulation of building”, Helsinki University of Technology, Laboratory of Structural Engineering and Building Physics, Publication 117; (2001).
  • [99] Ballagh K.O., “Acoustic properties of wall”, Applied Acoustics, 48:101–120, (1996).
  • [100] Zach J., Korjenic A., Petránek V., Hroudová J., Bednar T., “Performance evaluation and research of alternative thermal insulations based on sheep wool”, Energy and Buildings, 49: 246–253, (2012).
  • [101] Manohar K., Ramlakhan D., Kochar G., Haldar S., “Biodegradable fibrous thermal insulation”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 28: 45–47, (2015).
  • [102] Manohar K., “Experimental investigation of building thermal insulation from agricultural by-products”, British Journal of Applied Science & Technology, 2:227–39, (2012).
  • [103] Panyakaew S., Fotios S., “New thermal insulation boards made from coconut husk and bagasse”, Energy and Buildings, 43:1732–9, (2011).
  • [104] Asdrubali F., Baldinelli G., D'Alessandro F., Schiavoni S., Kenny J.M., Iannoni A., “Manufacturing process optimization of resilient materials made from recycled tyre granules”, 16th International Congress on Sound and Vibration, Krakow, 1985-1992, (2009).
  • [105] Asdrubali F., D'Alessandro F., “Impact sound insulation and viscoelastic properties of resilient materials made from recycled tyre granules”, International Journal of Acoustic and Vibration, 16:119–125, (2011).
  • [106] Benkreira H., Khan A., Horoshenkov KV., “Sustainable acoustic and thermal insulation materials from elastomeric waste residues”, Chemical Engineering Science, 66:4157–4171, (2011).
  • [107] Asdrubali F., D'Alessandro F., Schiavoni S., “Sound absorbing properties of materials made of rubber crumbs”, Acoustics’08, Paris, (2008).
  • [108] Zach J., Hroudova J., “Utilization of technical hemp for thermal insulating materials production”, 2nd international conference on suitable construction materials and technologies, Ancona, (2010).
  • [109] Asdrubali F., Pisello AL., D'Alessandro F., Bianchi F., Fabiani C., Cornicchia M,. “Experimental and numerical characterization of innovative cardboard based panels: thermal and acoustic performance analysis and life cycle assessment”, Building and Environment, 95:145–59, (2016).
  • [110] Baetens R., Jelle B.P., Thue J.V., Tenpierik M.J., Grynning S., Uvsløkk S., “Vacuum insulation panels for building applications: a review and beyond”, Energy and Buildings, 42:147–72, (2010).
  • [111] Alam M, Singh H, Limbachiya MC. “Vacuum Insulation Panels (VIPs) for building construction industry a review of the contemporary developments and future directions”, Applied Energy, 88:3592–3602, (2011).
  • [112] Baetens R., Jelle B.P., Gustavsend A., Grynninga S., “Gas-filled panels for building applications: a state-of-the-art review”, Energy and Buildings, 42:1969–75, (2010).
  • [113] Griffith B., Türler D., Arasteh D., “Optimizing the effective conductivity and cost of gas-filled panel thermal insulations”, 22nd International Thermal Conductivity Conference, Arizona State University, (1993).
  • [114] Dorcheh A.S., Abbasi H., “Silica aerogel; synthesis, properties and characterization”, Journal of Materials Processing Technology, 199: 10–26, (2008).
  • [115] Van Bommel M.J., den Engelsen C.W., van Miltenburg J.C., “A thermoporometry study of fumed silica/aerogel composites”, Journal of Porous Materials, 4:143–150, (1997).
  • [116] Baetens R., Jelle B.P., Gustavsen A., “Aerogel insulation for building applications: a state-of-the-art review” Energy and Buildings, 43:761–769, (2011).
  • [117] Neugebauer A., Chen K., Tang A., Allgeier A., Glicksman L.R., Gibson L.J., “Thermal conductivity and characterization of compacted, granular silica aerogel”, Energy and Buildings, 79:47–57, (2014).
  • [118] Berardi U., “The development of a monolithic aerogel glazed window for an energy retrofitting project”, Applied Energy, 154:603–615, (2015).
  • [119] Ricciardi P., Gibiat V., Hooley A., “Multilayer absorbers of silica aerogel”, In: Proceedings of Forum Acusticum, Sevilla, Spain, (2002).
  • [120] Hayase G., Kanamori K., Abe K., Yano H., Maeno A., Kaji H., “Polymethylsilsesquioxane -cellulose nanofiber biocomposite aerogels with high thermal insulation, bendability, and superhydrophobicity”, Applied Materials & Interfaces, 6:9466–9471, (2014).
There are 119 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Mehmet Ali Arslan This is me

Mustafa Aktaş This is me

Publication Date June 1, 2018
Submission Date February 27, 2017
Published in Issue Year 2018

Cite

APA Arslan, M. A., & Aktaş, M. (2018). İnşaat Sektöründe Kullanılan Yalıtım Malzemelerinin Isı ve Ses Yalıtımı Açısından Değerlendirilmesi. Politeknik Dergisi, 21(2), 299-320. https://doi.org/10.2339/politeknik.407257
AMA Arslan MA, Aktaş M. İnşaat Sektöründe Kullanılan Yalıtım Malzemelerinin Isı ve Ses Yalıtımı Açısından Değerlendirilmesi. Politeknik Dergisi. June 2018;21(2):299-320. doi:10.2339/politeknik.407257
Chicago Arslan, Mehmet Ali, and Mustafa Aktaş. “İnşaat Sektöründe Kullanılan Yalıtım Malzemelerinin Isı Ve Ses Yalıtımı Açısından Değerlendirilmesi”. Politeknik Dergisi 21, no. 2 (June 2018): 299-320. https://doi.org/10.2339/politeknik.407257.
EndNote Arslan MA, Aktaş M (June 1, 2018) İnşaat Sektöründe Kullanılan Yalıtım Malzemelerinin Isı ve Ses Yalıtımı Açısından Değerlendirilmesi. Politeknik Dergisi 21 2 299–320.
IEEE M. A. Arslan and M. Aktaş, “İnşaat Sektöründe Kullanılan Yalıtım Malzemelerinin Isı ve Ses Yalıtımı Açısından Değerlendirilmesi”, Politeknik Dergisi, vol. 21, no. 2, pp. 299–320, 2018, doi: 10.2339/politeknik.407257.
ISNAD Arslan, Mehmet Ali - Aktaş, Mustafa. “İnşaat Sektöründe Kullanılan Yalıtım Malzemelerinin Isı Ve Ses Yalıtımı Açısından Değerlendirilmesi”. Politeknik Dergisi 21/2 (June 2018), 299-320. https://doi.org/10.2339/politeknik.407257.
JAMA Arslan MA, Aktaş M. İnşaat Sektöründe Kullanılan Yalıtım Malzemelerinin Isı ve Ses Yalıtımı Açısından Değerlendirilmesi. Politeknik Dergisi. 2018;21:299–320.
MLA Arslan, Mehmet Ali and Mustafa Aktaş. “İnşaat Sektöründe Kullanılan Yalıtım Malzemelerinin Isı Ve Ses Yalıtımı Açısından Değerlendirilmesi”. Politeknik Dergisi, vol. 21, no. 2, 2018, pp. 299-20, doi:10.2339/politeknik.407257.
Vancouver Arslan MA, Aktaş M. İnşaat Sektöründe Kullanılan Yalıtım Malzemelerinin Isı ve Ses Yalıtımı Açısından Değerlendirilmesi. Politeknik Dergisi. 2018;21(2):299-320.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.