Research Article
BibTex RIS Cite

Optimum Design of Rc Retaining Walls with Key Section using Jaya Algorithm

Year 2019, , 283 - 291, 01.06.2019
https://doi.org/10.2339/politeknik.432031

Abstract

In the traditional design process, the design starts
with preliminary dimensions that may change by using engineering intuition
after unfulfillment of necessary design conditions. By this way, the design is
renewed with the new dimensions determined. In this process, when designing a
structure that provides enough durability, stability, ductility and stiffness,
the design is not going to go beyond trial-and-error especially for a more
economical structure. However, the ever-decreasing supply of resources and the
increase in environmental pollution require the structures to be designed with
minimum cost or emission. The main purpose of this study is to perform minimum
cost or CO2 emission design of a reinforced concrete console
retaining wall with a key section at the bottom by using JAYA algorithm. There
are 12 design variables utilized in this optimization process. The design
variables are related to the wall dimensions and reinforcement placed at the
various regions of the wall. The design problem has a total of 25 constraints
that are related with the slip, overturning, bearing capacity and overall
dimensions of the wall, dimension check of the cross section and the amount of
reinforcement. In the optimum design of the numerical example given in this
study, the effect of the magnitude of the surcharge load and the effect of the
parameters of the soil behind the wall on the minimum cost and CO2
emission design of the wall is investigated.

References

  • [1] Rana Sh., Islam N., Ahsan R. and Ghani S.N., “Application of Evolutionary Operation to the Minimum Cost Design of Continuous Prestressed Concrete Bridge Structure”, Eng. Struct., 46: 38-48, (2013).
  • [2] Öztürk H.T., Türkeli E. and Durmuş A., "Optimum Design of RC Shallow Tunnels in Earthquake Zones using Artificial Bee Colony and Genetic Algorithms", Computers and Concrete, 17: 435-453, (2016).
  • [3] Öztürk H.T., "Optimum Design of RC Cantilever Retaining Wall Using Artificial Bee Colony and Cuckoo Search Algorithms", 12th International Congress on Advances in Civil Engineering, Istanbul, 1-8, (2016).
  • [4] Öztürk H.T., "Optimum Cost Design of RC Columns using Big Bang-Big Crunch Optimization Algorithm", 12th International Congress on Advances in Civil Engineering, Istanbul, 1-8, (2016).
  • [5] Öztürk H.T., "İstinat Duvarlarının Öğrenme ve Öğretme Tabanlı Algoritmayla Optimum Tasarımı", Zemin Mekaniği ve Geoteknik Mühendisliği 16. Ulusal Kongresi, Erzurum, 813-822, (2016).
  • [6] Ceranic B., Fryer C. and Baines R.W., “An Application of Simulated Annealing to the Optimum Design of Reinforced Concrete Retaining Structures”, Computers & Structures, 79(17): 1569-1581, (2001).
  • [7] Yepes V., Alcala J., Perea C. and González-Vidosa F., “A Parametric Study of Optimum Earth-Retaining Walls by Simulated Annealing”, Engineering Structures, 30(3): 821-830, (2008).
  • [8] Kaveh, A. and Behnam A.F., “Charged System Search Algorithm for the Optimum Cost Design of Reinforced Concrete Cantilever Retaining Walls”, Arabian Journal for Science and Engineering, 38(3): 563-570, (2013).
  • [9] Khajehzadeh M., Taha M.R., El-Shafie A. and Eslami M., “Modified Particle Swarm Optimization for Optimum Design of Spread Footing and Retaining Wall”, Journal of Zhejiang University-Science A, 12(6): 415-427, (2011).
  • [10] Sivakumar Babu G. L. and Basha B. M., “Optimum Design of Cantilever Retaining Walls Using Target Reliability Approach”, International Journal of Geomechanics, 8(4): 240-252, (2008).
  • [11] Yepes V., Gonzalez-Vidosa F., Alcala J. and Villalba P., “CO2-Optimization Design of Reinforced Concrete Retaining Walls Based on a VNS-Threshold Acceptance Strategy”, Journal of Computing in Civil Engineering, 26(3): 378-386, (2011).
  • [12] Saribas A. and Erbatur F., “Optimization and Sensitivity of Retaining Structures”, Journal of Geotechnical Engineering, 122(8): 649-656, (1996).
  • [13] Akin A. and Saka M.P., “Optimum Design of Concrete Cantilever Retaining Walls using Harmony Search Algorithm”. 9th International Congress on Advances in Civil Engineering, Trabzon, (2010).
  • [14] Camp C.V. and Akin A., “Design of Retaining Walls Using Big Bang–Big Crunch Optimization”, Journal of Structural Engineering, 138(3): 438-448, (2011).
  • [15] Gandomi A.H., Kashani A.R., Roke D.A. and Mousavi M., “Optimization of Retaining Wall Design using Recent Swarm Intelligence Techniques”, Engineering Structures, 103: 72-84, (2015).
  • [16] Kaveh A. and Khayatazad M., “Optimal Design of Cantilever Retaining Walls using Ray Optimization Method”, Iranian Journal of Science and Technology Transactions of Civil Engineering, 38(C1+): 261-274, (2014).
  • [17] Kayhan A. H. and Demir A., “Betonarme Konsol Istinat Duvarlarının Parçacık Sürü Optimizasyonu ile Optimum Tasarımı”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(3): 129-135, (2016).
  • [18] Aydogdu, I., “Cost Optimization of Reinforced Concrete Cantilever Retaining Walls under Seismic Loading using a Biogeography-Based Optimization Algorithm with Levy Flights”, Engineering Optimization, 49(3): 381-400, (2017).
  • [19] Rao R., “Jaya: a Simple and New Optimization Algorithm for Solving Constrained and Unconstrained Optimization Problems”, International Journal of Industrial Engineering Computations, 7(1): 19-34, (2016).
  • [20] Khajehzadeh M., Taha M. R. and Eslami M., “A New Hybrid Firefly Algorithm for Foundation Optimization”, National Academy Science Letters, 36(3): 279-288, (2013).
  • [21] Saribas A. and Erbatur F., “Optimization and Sensitivity of Retaining Structures”, Journal of Geotechnical Engineering, 122(8): 649-656, (1996).
  • [22] ACI 318, “Building Code Requirements for Structural Concrete and Commentary”, (2014).

Tabanında Anahtar Kesiti Bulunan Betonarme İstinat Duvarlarının Jaya Algoritmasıyla Optimum Tasarımı

Year 2019, , 283 - 291, 01.06.2019
https://doi.org/10.2339/politeknik.432031

Abstract

Geleneksel tasarım süreçlerinde bir
yapının tasarımında bir önboyutla tasarıma başlanarak, bu tasarımın gerekli
koşulları sağlamaması durumunda mühendislik önsezisiyle tasarım değiştirilerek
yenilenmektedir. Bu süreçte, başta dayanım olmak üzere; dayanıklılık,
stabilite, süneklik ve rijitlik koşullarını sağlayan bir yapı tasarlandığında,
özellikle daha ekonomik bir yapı için tasarım birkaç deneme-yanılmadan öteye
gidilememektedir. Oysa kaynakların gün geçtikçe azalması ve çevre
kirliliğindeki artışlar, yapıların minimum maliyetle yada emisyonla
tasarlanmalarını gerektirmektedir. Bu çalışmanın temel amacı, tabanında anahtar
kesiti bulunan bir betonarme konsol istinat duvarının, JAYA algoritması
kullanılarak, minimum maliyetle yada CO2 emisyonuyla tasarımlarının
gerçekleştirilmesinden ibarettir. Betonarme istinat duvarı probleminde 12
tasarım değişkeni bulunmaktadır. Bu tasarım değişkenleri duvar boyutlarına ve
duvarın çeşitli bölgelerindeki donatılara ilişkindir. Problemin toplam 25
sınırlayıcısı bulunmakta ve bu sınırlayıcılar duvarın kayma, devrilme ve taşıma
gücü tahkikleri, betonarme kesit denetimleri ve boyut ile donatılara ilişkin
koşullardan oluşmaktadır. Çalışma kapsamında gerçekleştirilen sayısal
uygulamanın optimum tasarımda; duvar arkasındaki zemin parametreleriyle sürşarj
yükünün büyüklüğünün duvarın minimum maliyetine ve CO2 emisyon
değerine etkisi incelenmektedir. 

References

  • [1] Rana Sh., Islam N., Ahsan R. and Ghani S.N., “Application of Evolutionary Operation to the Minimum Cost Design of Continuous Prestressed Concrete Bridge Structure”, Eng. Struct., 46: 38-48, (2013).
  • [2] Öztürk H.T., Türkeli E. and Durmuş A., "Optimum Design of RC Shallow Tunnels in Earthquake Zones using Artificial Bee Colony and Genetic Algorithms", Computers and Concrete, 17: 435-453, (2016).
  • [3] Öztürk H.T., "Optimum Design of RC Cantilever Retaining Wall Using Artificial Bee Colony and Cuckoo Search Algorithms", 12th International Congress on Advances in Civil Engineering, Istanbul, 1-8, (2016).
  • [4] Öztürk H.T., "Optimum Cost Design of RC Columns using Big Bang-Big Crunch Optimization Algorithm", 12th International Congress on Advances in Civil Engineering, Istanbul, 1-8, (2016).
  • [5] Öztürk H.T., "İstinat Duvarlarının Öğrenme ve Öğretme Tabanlı Algoritmayla Optimum Tasarımı", Zemin Mekaniği ve Geoteknik Mühendisliği 16. Ulusal Kongresi, Erzurum, 813-822, (2016).
  • [6] Ceranic B., Fryer C. and Baines R.W., “An Application of Simulated Annealing to the Optimum Design of Reinforced Concrete Retaining Structures”, Computers & Structures, 79(17): 1569-1581, (2001).
  • [7] Yepes V., Alcala J., Perea C. and González-Vidosa F., “A Parametric Study of Optimum Earth-Retaining Walls by Simulated Annealing”, Engineering Structures, 30(3): 821-830, (2008).
  • [8] Kaveh, A. and Behnam A.F., “Charged System Search Algorithm for the Optimum Cost Design of Reinforced Concrete Cantilever Retaining Walls”, Arabian Journal for Science and Engineering, 38(3): 563-570, (2013).
  • [9] Khajehzadeh M., Taha M.R., El-Shafie A. and Eslami M., “Modified Particle Swarm Optimization for Optimum Design of Spread Footing and Retaining Wall”, Journal of Zhejiang University-Science A, 12(6): 415-427, (2011).
  • [10] Sivakumar Babu G. L. and Basha B. M., “Optimum Design of Cantilever Retaining Walls Using Target Reliability Approach”, International Journal of Geomechanics, 8(4): 240-252, (2008).
  • [11] Yepes V., Gonzalez-Vidosa F., Alcala J. and Villalba P., “CO2-Optimization Design of Reinforced Concrete Retaining Walls Based on a VNS-Threshold Acceptance Strategy”, Journal of Computing in Civil Engineering, 26(3): 378-386, (2011).
  • [12] Saribas A. and Erbatur F., “Optimization and Sensitivity of Retaining Structures”, Journal of Geotechnical Engineering, 122(8): 649-656, (1996).
  • [13] Akin A. and Saka M.P., “Optimum Design of Concrete Cantilever Retaining Walls using Harmony Search Algorithm”. 9th International Congress on Advances in Civil Engineering, Trabzon, (2010).
  • [14] Camp C.V. and Akin A., “Design of Retaining Walls Using Big Bang–Big Crunch Optimization”, Journal of Structural Engineering, 138(3): 438-448, (2011).
  • [15] Gandomi A.H., Kashani A.R., Roke D.A. and Mousavi M., “Optimization of Retaining Wall Design using Recent Swarm Intelligence Techniques”, Engineering Structures, 103: 72-84, (2015).
  • [16] Kaveh A. and Khayatazad M., “Optimal Design of Cantilever Retaining Walls using Ray Optimization Method”, Iranian Journal of Science and Technology Transactions of Civil Engineering, 38(C1+): 261-274, (2014).
  • [17] Kayhan A. H. and Demir A., “Betonarme Konsol Istinat Duvarlarının Parçacık Sürü Optimizasyonu ile Optimum Tasarımı”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(3): 129-135, (2016).
  • [18] Aydogdu, I., “Cost Optimization of Reinforced Concrete Cantilever Retaining Walls under Seismic Loading using a Biogeography-Based Optimization Algorithm with Levy Flights”, Engineering Optimization, 49(3): 381-400, (2017).
  • [19] Rao R., “Jaya: a Simple and New Optimization Algorithm for Solving Constrained and Unconstrained Optimization Problems”, International Journal of Industrial Engineering Computations, 7(1): 19-34, (2016).
  • [20] Khajehzadeh M., Taha M. R. and Eslami M., “A New Hybrid Firefly Algorithm for Foundation Optimization”, National Academy Science Letters, 36(3): 279-288, (2013).
  • [21] Saribas A. and Erbatur F., “Optimization and Sensitivity of Retaining Structures”, Journal of Geotechnical Engineering, 122(8): 649-656, (1996).
  • [22] ACI 318, “Building Code Requirements for Structural Concrete and Commentary”, (2014).
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Hasan Tahsin Öztürk

Erdem Türkeli This is me

Publication Date June 1, 2019
Submission Date December 7, 2017
Published in Issue Year 2019

Cite

APA Öztürk, H. T., & Türkeli, E. (2019). Tabanında Anahtar Kesiti Bulunan Betonarme İstinat Duvarlarının Jaya Algoritmasıyla Optimum Tasarımı. Politeknik Dergisi, 22(2), 283-291. https://doi.org/10.2339/politeknik.432031
AMA Öztürk HT, Türkeli E. Tabanında Anahtar Kesiti Bulunan Betonarme İstinat Duvarlarının Jaya Algoritmasıyla Optimum Tasarımı. Politeknik Dergisi. June 2019;22(2):283-291. doi:10.2339/politeknik.432031
Chicago Öztürk, Hasan Tahsin, and Erdem Türkeli. “Tabanında Anahtar Kesiti Bulunan Betonarme İstinat Duvarlarının Jaya Algoritmasıyla Optimum Tasarımı”. Politeknik Dergisi 22, no. 2 (June 2019): 283-91. https://doi.org/10.2339/politeknik.432031.
EndNote Öztürk HT, Türkeli E (June 1, 2019) Tabanında Anahtar Kesiti Bulunan Betonarme İstinat Duvarlarının Jaya Algoritmasıyla Optimum Tasarımı. Politeknik Dergisi 22 2 283–291.
IEEE H. T. Öztürk and E. Türkeli, “Tabanında Anahtar Kesiti Bulunan Betonarme İstinat Duvarlarının Jaya Algoritmasıyla Optimum Tasarımı”, Politeknik Dergisi, vol. 22, no. 2, pp. 283–291, 2019, doi: 10.2339/politeknik.432031.
ISNAD Öztürk, Hasan Tahsin - Türkeli, Erdem. “Tabanında Anahtar Kesiti Bulunan Betonarme İstinat Duvarlarının Jaya Algoritmasıyla Optimum Tasarımı”. Politeknik Dergisi 22/2 (June 2019), 283-291. https://doi.org/10.2339/politeknik.432031.
JAMA Öztürk HT, Türkeli E. Tabanında Anahtar Kesiti Bulunan Betonarme İstinat Duvarlarının Jaya Algoritmasıyla Optimum Tasarımı. Politeknik Dergisi. 2019;22:283–291.
MLA Öztürk, Hasan Tahsin and Erdem Türkeli. “Tabanında Anahtar Kesiti Bulunan Betonarme İstinat Duvarlarının Jaya Algoritmasıyla Optimum Tasarımı”. Politeknik Dergisi, vol. 22, no. 2, 2019, pp. 283-91, doi:10.2339/politeknik.432031.
Vancouver Öztürk HT, Türkeli E. Tabanında Anahtar Kesiti Bulunan Betonarme İstinat Duvarlarının Jaya Algoritmasıyla Optimum Tasarımı. Politeknik Dergisi. 2019;22(2):283-91.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.