Research Article
BibTex RIS Cite

Poliamid 11 kaplamasının termal karakteristiği, yüzey morfolojisi, mekanik ve tribolojik özelliklerin incelenmesi

Year 2021, , 401 - 408, 01.06.2021
https://doi.org/10.2339/politeknik.518540

Abstract

Bu çalışmanın amacı, akışkan yatağa daldırma yöntemi ile uygulanan poliamid kaplamanın mekanik ve kimyasal özelliklerinin incelenmesidir. Poliamid kaplama uygulaması için çelik test plakaları kullanılmıştır. Spreyleme ile astar uygulanmış test plakalarına, fırında ısıtma işlemi sonrası akışkan yatakta daldırma metoduyla poliamid kaplanmıştır. Kaplamanın mekanik dayanımının incelenmesi için aşınma dayanımı, çizilme testi, tuz testi ve sıcak yağa dayanım testleri yapılmıştır. Ayrıca kaplamanın termal karakteristiğini belirlemek amacı ile DSC, TGA analizleri yapılmıştır. Polimer kaplama ve astarın moleküler yapıları FTIR spektroskopisi ile analiz edilmiştir. Deneysel çalışma sonuçlarına göre, kaplamada yaklaşık olarak %50 su bulunduğu, kaplama yüzeyinin literatür araştırmalarına göre daha düzgün olduğu görülmüştür. Kaplamanın çizilme testi dayanımı 40N üzerindedir. Ağırlık testinde, 1,5kg yüke kadar kaplama yüzeyinde herhangi bir çatlak görülmemiştir. Aşınma testinde 1kg ek yükleme kullanılmasına rağmen, 5000 döngü sonrası poliamid kaplama iyi bir aşınma performansı sergilemiştir. Tuz testi ve sıcak yağ testleri sonrası kaplama yüzeyinde herhangi bir hata veya bozukluk gözlemlenmemiştir. Sonuç olarak akışkan yatağa daldırma metoduyla uygulanan poliamid toz kaplamaların, sert ve aşındırıcı çevrelerde ve mekanik dayanımın gerektiği mekanik parçalarda kullanılması uygundur.

References

  • 1. Bhadu M.K., Guin A.K., Singh V., and Choudhary S. K., “Corrosion Study of Powder-Coated Galvanised Steel”, ISRN Corrosion Volume, (2013)
  • 2. Maetens D., “Weathering degradation mechanism in polyester powder coatings”, Progress in Organic Coatings, 58:172–179, (2007)
  • 3. Bajat J. B., Popic J. P., and Miskovic-Stankovic V. B., “The influence of aluminium surface pretreatment on the corrosion stability and adhesion of powder polyester coating”, Progress in Organic Coatings, 69: 316–321, (2010)
  • 4. Selvaraj M., Maruthan K., Venkatachari G., “Studies on enhancement of surface durability for steel surface by camphor oil modified epoxy polyamide coating”, Corrosion Science, 48: 4365-4377, (2006)
  • 5. BelloR J.O., Wood J.K., “Micro-abrasion of filled and unfilled polyamide 11 coatings”, Wear, 258: 294-302, (2005)
  • 6. Martyak N.M., “Corrosion performance of steel coated with co-polyamides and polyaniline”, Corrosion Science, 49: 3826-3837, (2007)
  • 7. Dastoori K., Makin B. and Telford J., “Measurements of thickness and adhesive properties of electrostatic powder coatings for standard and modified powder coating guns”, Electrostat, 51-52: 545-551, (2001)
  • 8. Fazlyyakhmatov M., “Experimental study of the polymer powder film thickness uniformity produced by the corona discharge”, Journal of Physics: Conference Series, 789, conference 1
  • 9. Dalibon E.L., Escalada L., Simison S., Forsichc C., Heimc D., Brühl S.P., “Mechanical and corrosion behavior of thick and soft DLC coatings”, Surface & Coatings Technology 312: 101–109, (2017)
  • 10. Barletta M., Tagliaferri V.,” Influence of process parameters in electrostatic fluidized bed coating”, Surface & Coatings Technology, 200: 4619 – 4629, (2006)
  • 11. Leong K.C, Lu M., Rudolph V., “Comparative study of the fluidized-bed coating of cylindrical metal surfaces with various thermoplastic polymer powders”, Journal of Materials Processing Technology, 89-90: 354-360, (1999)
  • 12. Liu T., Chen D., Phang I., Wei C., “Studies on Crystal Transition of Polyamide 11 Nanocomposites by Variable-temperature X-Ray Diffraction”, Chinese Journal of Polymer Science, 32: 115-122, (2014)
  • 13. Schmitt J., Flemming H., “FTIR Spectroscopy in Microbial and Material Analysis”, International Biodeterioration & Biodegradation, 41: 1-11, (1998)
  • 14. Achhammer B. G., Reinhart W. F., Kline G.M., “Mechanism of the Degradation of Polyamides”, Journal of Research of the National Bureau of Standards, 46: 5, (1951).15. Beyler C.L., Hirschler M.M., “Thermal Decomposition of Polymers”, Handbook of Fire Protection Engineering 2, 7: 111-131, (2002)
  • 16. Spencer N.D., “Modifying Surface Composition and Structure for Applications in Tribology”, Biology and Catalysis, 17: 493, (2001)
  • 17. Farshad F., Pesacreta T.C., Garber J.D., “A Comparison of Surface Roughness of Pipes as Measured by Two Profilometers and Atomic Force Microscopy”, Scanning, 23: 241-248, (2001)
  • 18. Al-Hadharami L., Quddus A., Aloatabi D., “Calcium sulfate scale deposition on coated carbon steel and titanium”, Desalination and Water Treatment, 51:13-15, 2521-2528, (2013)
  • 19. Encinas N., Pantoja M., Abenojar J., M.A. “Martínez, Control of wettability of polymers by surface roughness modification”, Journal of Adhesion Science and Technology, 24: 11-12, 1869-1883, (2010)
  • 20. Rajesh J., Bijwe J., “Investigations on scratch behaviour of various polyamides”, Wear, 259: 661–668, (2005)
  • 21. Rodriguez V., Sukumaran J., Delgado Y.P., “Scratch evaluation on a high performance polymer”, Mechanical Engineering Letters, 9: 76-84, (2013)

Investigation of Thermal Characteristic Surface Morphology Mechanical Properties and Tribological Properties of Polyamide 11 Powder Coating

Year 2021, , 401 - 408, 01.06.2021
https://doi.org/10.2339/politeknik.518540

Abstract

The purpose of this study was to investigate the mechanical and chemical characteristics of polyamide coating by dipping in a fluidized bed system. For polyamide coating application steel test specimens were used. Test specimens, which were sprayed with primer, were cured in an oven and then coated by dipping in fluidized bed. To investigate the mechanical properties abrasion resistance, scratch, salt spray and hot oil resistance tests were performed. Furthermore to investigate the thermal characteristics of coating DSC and TGA analyses were carried out. Molecular structure of polymer coating and primer were analysed by FTIR spectroscopy. Experimental results showed that primer consists nearly 50% percentage of water, coating surface was smoother than concerning investigations in literature. Scratch resistance of coating was above 40N. Up to 1.5kg load there was no crack on coating during falling weight test. Despite using an additional load of 1kg to abrasion wheels during 5000 cycles of test polyamide coating showed fine abrasion performance. On the coation surface, there were no coating failure or deterioration failure was observed after salt spray and hot oil tests. In summary, polyamide powder coatings applied by dipping in a fluidized bed can be used in harsh corrosive environments and also this coating is suitable for mechanic parts where the mechanical strength is necessary.

References

  • 1. Bhadu M.K., Guin A.K., Singh V., and Choudhary S. K., “Corrosion Study of Powder-Coated Galvanised Steel”, ISRN Corrosion Volume, (2013)
  • 2. Maetens D., “Weathering degradation mechanism in polyester powder coatings”, Progress in Organic Coatings, 58:172–179, (2007)
  • 3. Bajat J. B., Popic J. P., and Miskovic-Stankovic V. B., “The influence of aluminium surface pretreatment on the corrosion stability and adhesion of powder polyester coating”, Progress in Organic Coatings, 69: 316–321, (2010)
  • 4. Selvaraj M., Maruthan K., Venkatachari G., “Studies on enhancement of surface durability for steel surface by camphor oil modified epoxy polyamide coating”, Corrosion Science, 48: 4365-4377, (2006)
  • 5. BelloR J.O., Wood J.K., “Micro-abrasion of filled and unfilled polyamide 11 coatings”, Wear, 258: 294-302, (2005)
  • 6. Martyak N.M., “Corrosion performance of steel coated with co-polyamides and polyaniline”, Corrosion Science, 49: 3826-3837, (2007)
  • 7. Dastoori K., Makin B. and Telford J., “Measurements of thickness and adhesive properties of electrostatic powder coatings for standard and modified powder coating guns”, Electrostat, 51-52: 545-551, (2001)
  • 8. Fazlyyakhmatov M., “Experimental study of the polymer powder film thickness uniformity produced by the corona discharge”, Journal of Physics: Conference Series, 789, conference 1
  • 9. Dalibon E.L., Escalada L., Simison S., Forsichc C., Heimc D., Brühl S.P., “Mechanical and corrosion behavior of thick and soft DLC coatings”, Surface & Coatings Technology 312: 101–109, (2017)
  • 10. Barletta M., Tagliaferri V.,” Influence of process parameters in electrostatic fluidized bed coating”, Surface & Coatings Technology, 200: 4619 – 4629, (2006)
  • 11. Leong K.C, Lu M., Rudolph V., “Comparative study of the fluidized-bed coating of cylindrical metal surfaces with various thermoplastic polymer powders”, Journal of Materials Processing Technology, 89-90: 354-360, (1999)
  • 12. Liu T., Chen D., Phang I., Wei C., “Studies on Crystal Transition of Polyamide 11 Nanocomposites by Variable-temperature X-Ray Diffraction”, Chinese Journal of Polymer Science, 32: 115-122, (2014)
  • 13. Schmitt J., Flemming H., “FTIR Spectroscopy in Microbial and Material Analysis”, International Biodeterioration & Biodegradation, 41: 1-11, (1998)
  • 14. Achhammer B. G., Reinhart W. F., Kline G.M., “Mechanism of the Degradation of Polyamides”, Journal of Research of the National Bureau of Standards, 46: 5, (1951).15. Beyler C.L., Hirschler M.M., “Thermal Decomposition of Polymers”, Handbook of Fire Protection Engineering 2, 7: 111-131, (2002)
  • 16. Spencer N.D., “Modifying Surface Composition and Structure for Applications in Tribology”, Biology and Catalysis, 17: 493, (2001)
  • 17. Farshad F., Pesacreta T.C., Garber J.D., “A Comparison of Surface Roughness of Pipes as Measured by Two Profilometers and Atomic Force Microscopy”, Scanning, 23: 241-248, (2001)
  • 18. Al-Hadharami L., Quddus A., Aloatabi D., “Calcium sulfate scale deposition on coated carbon steel and titanium”, Desalination and Water Treatment, 51:13-15, 2521-2528, (2013)
  • 19. Encinas N., Pantoja M., Abenojar J., M.A. “Martínez, Control of wettability of polymers by surface roughness modification”, Journal of Adhesion Science and Technology, 24: 11-12, 1869-1883, (2010)
  • 20. Rajesh J., Bijwe J., “Investigations on scratch behaviour of various polyamides”, Wear, 259: 661–668, (2005)
  • 21. Rodriguez V., Sukumaran J., Delgado Y.P., “Scratch evaluation on a high performance polymer”, Mechanical Engineering Letters, 9: 76-84, (2013)
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Ömer Faruk Murathan 0000-0002-3636-2164

Selim Kevran This is me 0000-0001-9020-8523

Publication Date June 1, 2021
Submission Date January 28, 2019
Published in Issue Year 2021

Cite

APA Murathan, Ö. F., & Kevran, S. (2021). Investigation of Thermal Characteristic Surface Morphology Mechanical Properties and Tribological Properties of Polyamide 11 Powder Coating. Politeknik Dergisi, 24(2), 401-408. https://doi.org/10.2339/politeknik.518540
AMA Murathan ÖF, Kevran S. Investigation of Thermal Characteristic Surface Morphology Mechanical Properties and Tribological Properties of Polyamide 11 Powder Coating. Politeknik Dergisi. June 2021;24(2):401-408. doi:10.2339/politeknik.518540
Chicago Murathan, Ömer Faruk, and Selim Kevran. “Investigation of Thermal Characteristic Surface Morphology Mechanical Properties and Tribological Properties of Polyamide 11 Powder Coating”. Politeknik Dergisi 24, no. 2 (June 2021): 401-8. https://doi.org/10.2339/politeknik.518540.
EndNote Murathan ÖF, Kevran S (June 1, 2021) Investigation of Thermal Characteristic Surface Morphology Mechanical Properties and Tribological Properties of Polyamide 11 Powder Coating. Politeknik Dergisi 24 2 401–408.
IEEE Ö. F. Murathan and S. Kevran, “Investigation of Thermal Characteristic Surface Morphology Mechanical Properties and Tribological Properties of Polyamide 11 Powder Coating”, Politeknik Dergisi, vol. 24, no. 2, pp. 401–408, 2021, doi: 10.2339/politeknik.518540.
ISNAD Murathan, Ömer Faruk - Kevran, Selim. “Investigation of Thermal Characteristic Surface Morphology Mechanical Properties and Tribological Properties of Polyamide 11 Powder Coating”. Politeknik Dergisi 24/2 (June 2021), 401-408. https://doi.org/10.2339/politeknik.518540.
JAMA Murathan ÖF, Kevran S. Investigation of Thermal Characteristic Surface Morphology Mechanical Properties and Tribological Properties of Polyamide 11 Powder Coating. Politeknik Dergisi. 2021;24:401–408.
MLA Murathan, Ömer Faruk and Selim Kevran. “Investigation of Thermal Characteristic Surface Morphology Mechanical Properties and Tribological Properties of Polyamide 11 Powder Coating”. Politeknik Dergisi, vol. 24, no. 2, 2021, pp. 401-8, doi:10.2339/politeknik.518540.
Vancouver Murathan ÖF, Kevran S. Investigation of Thermal Characteristic Surface Morphology Mechanical Properties and Tribological Properties of Polyamide 11 Powder Coating. Politeknik Dergisi. 2021;24(2):401-8.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.