Research Article
BibTex RIS Cite

Time Delay Margins Computation for Stability of Hybrid Power Systems

Year 2020, , 1131 - 1139, 01.12.2020
https://doi.org/10.2339/politeknik.593892

Abstract

In load frequency control (LFC), it is essential to
transmit measurements of control signals from the control center to plant side
and remote terminal units (RTU) to control center. Therefore, time delays
become inevitable due to the use of conventional communication channels. The
dynamic performance of LFC system would be degraded by these delays.   This paper is dedicated to the
delay-dependent stability of the LFC of hybrid power generation subsystem. The
system studied includes wind turbine generator (WTG), photovoltaic system (PV),
ultra-capacitor (UC) bank for energy storage, fuel cell (FC) system and diesel
generator(DG). Delay margin is stated for the upper bound on the delay for
stability of LFC system. An analytical method is used to compute delay margins.
Delay margins are calculated for wide range of proportional-integral (PI)
controller. Such results could be utilized to tune the PI controllers as to
achieve a compromise between the dynamic performance and the delay margin. It
has been determined in which intervals, the controller parameters of the
proposed hybrid system can be selected while the system is in stable region.
the results are presented in tables and graphs. Simulation study of the
proposed system with Matlab / Simulink was performed. The results of the
simulation studies and the theoretical studies showed compatibility. Simulation
studies verify the effectiveness of the proposed method.

References

  • 1. Farid, K., Damir, Novosel. Sustainable Energy Trends, Opportunities, and Challenges. in Power Electronics Integration and Applications in Distribution Sixth Conference on Innovative Smart Grid Technologies (ISGT 2015). 2014.2. Wang, G.Z., et al., Stability analysis and dynamic energy management of PV-hybrid storage based DC microgrid. Third International Conference on Energy Engineering and Environmental Protection, 2019. 227.3. Ghadiriyan, S. and M. Rahimi, Mathematical representation, stability analysis and performance improvement of DC microgrid system comprising hybrid wind/battery sources and CPLs. Iet Generation Transmission & Distribution, 2019. 13(10): p. 1845-1855.4. Xie, B., et al., Two-Stage Battery Energy Storage System (BESS) in AC Microgrids with Balanced State-of-Charge and Guaranteed Small-Signal Stability. Energies, 2018. 11(2).5. Doolla, S. and T.S. Bhatti, Load Frequency Control of an Isolated Small-Hydro Power Plant With Reduced Dump Load. IEEE Transactions on Power Systems, 2006. 21(4): p. 1912-1919.6. Obara, S.y., Analysis of a fuel cell micro-grid with a small-scale wind turbine generator. International Journal of Hydrogen Energy, 2007. 32(3): p. 323-336.7. Wang, C. and M.H. Nehrir, Power Management of a Stand-Alone Wind/Photovoltaic/Fuel Cell Energy System. IEEE Transactions on Energy Conversion, 2008. 23(3): p. 957-967.8. Tomonobu Senjyu, R.S., Naomitsu Urasaki, Hiroki Higa, Katsumi Uezato, and Toshihisa Funabashi, Output power control of wind turbine generator by pitch angle control using minimum variance control. ELECTRICAL ENGINEERING IN JAPAN 2006. 154(2): p. 10 - 17.9. Yong, H., et al. Output Feedback Stabilization for Discrete-time Systems with A Time-varying Delay. in 2007 Chinese Control Conference. 2007.10. Lou, G.N., et al., Stability Robustness for Secondary Voltage Control in Autonomous Microgrids With Consideration of Communication Delays. Ieee Transactions on Power Systems, 2018. 33(4): p. 4164-4178.11. Jiang, L., et al. Delay-dependent stability for load frequency control with constant and time-varying delays. in 2009 IEEE Power & Energy Society General Meeting. 2009.12. Xiaofeng, Y. and K. Tomsovic, Application of linear matrix inequalities for load frequency control with communication delays. IEEE Transactions on Power Systems, 2004. 19(3): p. 1508-1515.13. S, B.K., Tomsovic ; A, Bose, Communication models for third party load frequency control. IEEE Trans. Power Syst., 2004. 19(1): p. 543-548.14. Shuai, Z.K., et al., A Maximum Power Loading Factor (MPLF) Control Strategy for Distributed Secondary Frequency Regulation of Islanded Microgrid. Ieee Transactions on Power Electronics, 2019. 34(3): p. 2275-2291.15. Nourollah, S. and G.B. Gharehpetian, Coordinated Load Shedding Strategy to Restore Voltage and Frequency of Microgrid to Secure Region. Ieee Transactions on Smart Grid, 2019. 10(4): p. 4360-4368.16. Bevrani, H. and T. Hiyama, On Load–Frequency Regulation With Time Delays: Design and Real-Time Implementation. IEEE Transactions on Energy Conversion, 2009. 24(1): p. 292-300.17. Saberi, H., S. Mehraeen, and B.Y. Wang, Stability Improvement of Microgrids Using a Novel Reduced UPFC Structure via Nonlinear Optimal Control. Thirty-Third Annual Ieee Applied Power Electronics Conference and Exposition (Apec 2018), 2018: p. 3294-3300. 18. Walton, K. and J.E. Marshall, Direct method for TDS stability analysis. IEE Proceedings D - Control Theory and Applications, 1987. 134(2): p. 101-107.19. S Sonmez and S. Ayasun, Stability Region in the Parameter Space of PI Controller for a Single-Area Load Frequency Control System With Time Delay. IEEE Transactions on Power Systems, 2016. 31(1): p. 829-830.20. Nayeripour, M., M. Hoseintabar, and T. Niknam, Frequency deviation control by coordination control of FC and double-layer capacitor in an autonomous hybrid renewable energy power generation system. Renewable Energy, 2011. 36(6): p. 1741-1746.21. Ayasun, S. and A. Gelen, Stability analysis of a generator excitation control system with time delays. Electrical Engineering, 2009. 91(6): p. 347.

Melez Güç Sistemlerinde Zaman Gecikmesinin Kararlılık Analizi

Year 2020, , 1131 - 1139, 01.12.2020
https://doi.org/10.2339/politeknik.593892

Abstract

Yük frekans
kontrolü (LFC) de, kontrol sinyallerinin ölçümlerini kontrol merkezinden
kontrol ünitesine ve uzak terminal ünitelerinden (RTU) kontrol merkezine
iletmek esastır. Bu nedenle, geleneksel iletişim kanallarının kullanılması
nedeniyle zaman gecikmeleri kaçınılmaz hale geliyor. LFC sisteminin dinamik
performansı bu gecikmelerle azalır. Bu makale, yerel melez enerji üretim  sisteminin LFC'sinin gecikmeye bağlı
kararlılığını analiz etmektedir. Çalışılan sistem, rüzgar türbini jeneratörü
(WTG), fotovoltaik sistem (PV), enerji depolama için ultra-kapasitör (UC)
bankası, yakıt hücresi (FC) sistemi ve dizel jeneratör (DG) içerir. Bu
çalışmada, böyle bir sistemin modellemesi ve benzetimi yapılmıştır. Gecikme
marjı, LFC sisteminin kararlılık gecikmesinde üst sınırı belirtmektedir.
Gecikme marjlarını hesaplamak için analitik bir yöntem kullanılmıştır. Gecikme
marjları, oransal- integral (PI) kontrolörün geniş bir aralığı için
hesaplanmıştır. Bu sonuçlar, PI kontrolör parametrelerini, sistemin dinamik performansı
ile gecikme marjı arasında dengeli bir seçim yapacak şekilde ayarlamak için
kullanılabilir. Önerilen hibrit sistemin kontrolör parametrelerinin kararlılık
çerçevesinde hangi aralıklarda seçile bilineceği tespit edilerek, tablo ve
grafik halinde sunulmuştur. Önerilen sistemin Matlab/Simulink ile bezetim
çalışması gerçekleştirilmiştir. 
Simülasyon çalışmaları ile teorik çalışmaların sonuçları uyumluluk
göstermiştir. Simülasyon çalışmaları önerilen yöntemin etkinliğini
doğrulamaktadır.

References

  • 1. Farid, K., Damir, Novosel. Sustainable Energy Trends, Opportunities, and Challenges. in Power Electronics Integration and Applications in Distribution Sixth Conference on Innovative Smart Grid Technologies (ISGT 2015). 2014.2. Wang, G.Z., et al., Stability analysis and dynamic energy management of PV-hybrid storage based DC microgrid. Third International Conference on Energy Engineering and Environmental Protection, 2019. 227.3. Ghadiriyan, S. and M. Rahimi, Mathematical representation, stability analysis and performance improvement of DC microgrid system comprising hybrid wind/battery sources and CPLs. Iet Generation Transmission & Distribution, 2019. 13(10): p. 1845-1855.4. Xie, B., et al., Two-Stage Battery Energy Storage System (BESS) in AC Microgrids with Balanced State-of-Charge and Guaranteed Small-Signal Stability. Energies, 2018. 11(2).5. Doolla, S. and T.S. Bhatti, Load Frequency Control of an Isolated Small-Hydro Power Plant With Reduced Dump Load. IEEE Transactions on Power Systems, 2006. 21(4): p. 1912-1919.6. Obara, S.y., Analysis of a fuel cell micro-grid with a small-scale wind turbine generator. International Journal of Hydrogen Energy, 2007. 32(3): p. 323-336.7. Wang, C. and M.H. Nehrir, Power Management of a Stand-Alone Wind/Photovoltaic/Fuel Cell Energy System. IEEE Transactions on Energy Conversion, 2008. 23(3): p. 957-967.8. Tomonobu Senjyu, R.S., Naomitsu Urasaki, Hiroki Higa, Katsumi Uezato, and Toshihisa Funabashi, Output power control of wind turbine generator by pitch angle control using minimum variance control. ELECTRICAL ENGINEERING IN JAPAN 2006. 154(2): p. 10 - 17.9. Yong, H., et al. Output Feedback Stabilization for Discrete-time Systems with A Time-varying Delay. in 2007 Chinese Control Conference. 2007.10. Lou, G.N., et al., Stability Robustness for Secondary Voltage Control in Autonomous Microgrids With Consideration of Communication Delays. Ieee Transactions on Power Systems, 2018. 33(4): p. 4164-4178.11. Jiang, L., et al. Delay-dependent stability for load frequency control with constant and time-varying delays. in 2009 IEEE Power & Energy Society General Meeting. 2009.12. Xiaofeng, Y. and K. Tomsovic, Application of linear matrix inequalities for load frequency control with communication delays. IEEE Transactions on Power Systems, 2004. 19(3): p. 1508-1515.13. S, B.K., Tomsovic ; A, Bose, Communication models for third party load frequency control. IEEE Trans. Power Syst., 2004. 19(1): p. 543-548.14. Shuai, Z.K., et al., A Maximum Power Loading Factor (MPLF) Control Strategy for Distributed Secondary Frequency Regulation of Islanded Microgrid. Ieee Transactions on Power Electronics, 2019. 34(3): p. 2275-2291.15. Nourollah, S. and G.B. Gharehpetian, Coordinated Load Shedding Strategy to Restore Voltage and Frequency of Microgrid to Secure Region. Ieee Transactions on Smart Grid, 2019. 10(4): p. 4360-4368.16. Bevrani, H. and T. Hiyama, On Load–Frequency Regulation With Time Delays: Design and Real-Time Implementation. IEEE Transactions on Energy Conversion, 2009. 24(1): p. 292-300.17. Saberi, H., S. Mehraeen, and B.Y. Wang, Stability Improvement of Microgrids Using a Novel Reduced UPFC Structure via Nonlinear Optimal Control. Thirty-Third Annual Ieee Applied Power Electronics Conference and Exposition (Apec 2018), 2018: p. 3294-3300. 18. Walton, K. and J.E. Marshall, Direct method for TDS stability analysis. IEE Proceedings D - Control Theory and Applications, 1987. 134(2): p. 101-107.19. S Sonmez and S. Ayasun, Stability Region in the Parameter Space of PI Controller for a Single-Area Load Frequency Control System With Time Delay. IEEE Transactions on Power Systems, 2016. 31(1): p. 829-830.20. Nayeripour, M., M. Hoseintabar, and T. Niknam, Frequency deviation control by coordination control of FC and double-layer capacitor in an autonomous hybrid renewable energy power generation system. Renewable Energy, 2011. 36(6): p. 1741-1746.21. Ayasun, S. and A. Gelen, Stability analysis of a generator excitation control system with time delays. Electrical Engineering, 2009. 91(6): p. 347.
There are 1 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Halil Erol 0000-0001-6171-0362

Saffet Ayasun 0000-0002-6785-3775

Publication Date December 1, 2020
Submission Date July 18, 2019
Published in Issue Year 2020

Cite

APA Erol, H., & Ayasun, S. (2020). Melez Güç Sistemlerinde Zaman Gecikmesinin Kararlılık Analizi. Politeknik Dergisi, 23(4), 1131-1139. https://doi.org/10.2339/politeknik.593892
AMA Erol H, Ayasun S. Melez Güç Sistemlerinde Zaman Gecikmesinin Kararlılık Analizi. Politeknik Dergisi. December 2020;23(4):1131-1139. doi:10.2339/politeknik.593892
Chicago Erol, Halil, and Saffet Ayasun. “Melez Güç Sistemlerinde Zaman Gecikmesinin Kararlılık Analizi”. Politeknik Dergisi 23, no. 4 (December 2020): 1131-39. https://doi.org/10.2339/politeknik.593892.
EndNote Erol H, Ayasun S (December 1, 2020) Melez Güç Sistemlerinde Zaman Gecikmesinin Kararlılık Analizi. Politeknik Dergisi 23 4 1131–1139.
IEEE H. Erol and S. Ayasun, “Melez Güç Sistemlerinde Zaman Gecikmesinin Kararlılık Analizi”, Politeknik Dergisi, vol. 23, no. 4, pp. 1131–1139, 2020, doi: 10.2339/politeknik.593892.
ISNAD Erol, Halil - Ayasun, Saffet. “Melez Güç Sistemlerinde Zaman Gecikmesinin Kararlılık Analizi”. Politeknik Dergisi 23/4 (December 2020), 1131-1139. https://doi.org/10.2339/politeknik.593892.
JAMA Erol H, Ayasun S. Melez Güç Sistemlerinde Zaman Gecikmesinin Kararlılık Analizi. Politeknik Dergisi. 2020;23:1131–1139.
MLA Erol, Halil and Saffet Ayasun. “Melez Güç Sistemlerinde Zaman Gecikmesinin Kararlılık Analizi”. Politeknik Dergisi, vol. 23, no. 4, 2020, pp. 1131-9, doi:10.2339/politeknik.593892.
Vancouver Erol H, Ayasun S. Melez Güç Sistemlerinde Zaman Gecikmesinin Kararlılık Analizi. Politeknik Dergisi. 2020;23(4):1131-9.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.