Research Article
BibTex RIS Cite

Plastik Enjeksiyon Kalıplamada Şekil Uyumlu Soğutma Kanalları için Soğutma Sıvısı Akış Stratejilerinin Karşılaştırılması

Year 2021, , 1249 - 1255, 01.09.2021
https://doi.org/10.2339/politeknik.639637

Abstract

Plastik enjeksiyon kalıplamada üretim hızının artırılması ve ürün kalitesinin iyileştirilmesi amacıyla daha etkin soğutmanın gerçekleştirilebilmesi için şekil uyumlu soğutma kanallarına ihtiyaç duyulmaktadır. Bu çalışmada sistematik bir tasarım metodu ile tasarlanmış spiral, zikzak ve paralel akış hatlarına sahip şekil uyumlu ve düz soğutma kanallarının plastik enjeksiyon kalıplarındaki soğutma etkinlikleri incelenmiştir. Bu amaçla sayısal olarak soğuma ve çarpılma analizleri yapılarak tasarlanan soğutma kanallarının çevrim süresine ve plastik parça üzerindeki çarpılmaya etkileri belirlenmeye çalışılmıştır. Doğrusal kanal yerine şekil uyumlu soğutma kanalı kullanımı ile soğutma süresi %51 ve çarpılma miktarı %25 seviyesine kadar düşüş sağlanmıştır. Şekil uyumlu soğutma kanalları arasında en kısa çevrim süresi spiral formlu kanalda, en düşük çarpılma ise zikzak formlu kanalda elde edilmiştir. Spiral ve doğrusal formlu soğutma kanalına sahip plastik enjeksiyon kalıpları imal edilerek baskı denemeleri yapılmış ve elde edilen deneysel sonuçlar analiz sonuçları ile karşılaştırılmıştır. Sayısal ve deneysel sonuçların birbiri ile uyumlu oldukları görülmüştür.

Supporting Institution

Gazi Üniversitesi Bilimsel Araştırma Projeleri

Project Number

07/2018-08

Thanks

Bu araştırmaya sağladığı destekten dolayı Gazi Üniversitesi Bilimsel Araştırma Projeleri’ne (BAP) teşekkür ederiz.

References

  • [1] Qiao H., "A systematic computer-aided approach to cooling system optimal design in plastic injection molding", International journal of mechanical sciences, 48(4): 430-439, (2006).
  • [2] Hassan H., Regnier N., Lebot C., Pujos C. and Defaye G., “Effect of cooling system on the polymer temperature and solidification during injection molding”, Applied Thermal Engineering, 29(8-9): 1786-1791, (2009).
  • [3] Dimla D. E., Camilotto M. and Miani. F., "Design and optimisation of conformal cooling channels in injection moulding tools", Journal of Materials Processing Technology, 164: 1294-1300, (2005).
  • [4] Yadegari M., Masoumi H. and Gheisari M., "Optimization of cooling channels in plastic injection molding", International Journal of Applied Engineering Research, 11(8): 5777-5780, (2016).
  • [5] Zhou H. and Li D., "Mold cooling simulation of the pressing process in TV panel production", Simulation Modelling Practice and Theory, 13(3): 273-285, (2005).
  • [6] Wang G. L., Zhao G. Q. and Wang X. X., "Heating/cooling channels design for an automotive interior part and its evaluation in rapid heat cycle molding", Materials & Design, 59: 310-322, (2014).
  • [7] Li C. G., Li C. L., Liu Y. and Huang Y., “A new C-space method to automate the layout design of injection mould cooling system”, Computer-Aided Design, 44(9): 811-823, (2012).
  • [8] Kovács J. G. and Sikló B., "Investigation of cooling effect at corners in injection molding", International Communications in Heat and Mass Transfer, 38(10): 1330-1334, (2011).
  • [9] Altaf K., Raghavan V. R. and Rani A. M. A., "Comparative thermal analysis of circular and profiled cooling channels for injection mold tools", Journal of Applied Sciences, 11(11): 2068-2071, (2011).
  • [10] Saifullah A. B. M., Masood S. H. and Sbarski I., "New cooling channel design for injection moulding", Proceedings of the World Congress on Engineering, 1:1-4, (2009).
  • [11] Khan M., Afaq S. K., Khan N. U. and Ahmad S., "Cycle time reduction in injection molding process by selection of robust cooling channel design", ISRN Mechanical Engineering, 2014:1-8, (2014).
  • [12] Kitayama S., Tamada K., Takano M. and Aiba S., "Numerical and experimental investigation on process parameters optimization in plastic injection molding for weldlines reduction and clamping force minimization", The International Journal of Advanced Manufacturing Technology, 97(5-8): 2087-2098, (2018).
  • [13] Lu C. T., Chen C. H. and Tseng S. C., "Application of conformal cooling to reduce cooling time and warpage of a U-shaped plate", AIP Conference Proceedings, 2065(1): 030007, (2019).
  • [14] Singraur, Deepika S., Bhushan T. Patil and Vasim A. Shaikh. "Defect Minimization of an Injection Molded Plastic Component Using Conformal Cooling Channels", Materials Science Forum, Trans Tech Publications Ltd, Vol. 1019: 205-210, (2021).
  • [15] Marin, F., de Souza, A. F., Ahrens, C. H. and de Lacalle, L. N. L., "A new hybrid process combining machining and selective laser melting to manufacture an advanced concept of conformal cooling channels for plastic injection molds", The International Journal of Advanced Manufacturing Technology, 1-16, (2021).
  • [16] Purav, Advait C., Deepika S. Singraur, and D. S. S. Sudhakar. "Investigations into performance of conventional and conformal cooling channels of a plastic injection mold", IOP Conference Series: Materials Science and Engineering, IOP Publishing, 1070:1, 012122, (2021).
  • [17] Kuo, Chil-Chyuan, and Jia-Qi Wu. "Development of a low-cost epoxy resin mold with high cooling efficiency", The International Journal of Advanced Manufacturing Technology, 1-22, (2021).
  • [18] Rahim S. Z. A., Sharif S., Zain A. M., Nasir S. M. and Mohd Saad R., "Improving the quality and productivity of molded parts with a new design of conformal cooling channels for the injection molding process", Advances in polymer technology, 35(1): 21524, (2016).
  • [19] Dang X. P. and Park H. S., "Design of U-shape milled groove conformal cooling channels for plastic injection mold", International Journal of precision engineering and manufacturing, 12(1): 73-84, (2011).
  • [20] Ferreira J. C. and Mateus A., "Studies of rapid soft tooling with conformal cooling channels for plastic injection moulding", Journal of Materials Processing Technology, 142(2): 508-516, (2003).
  • [21] Sun Y. F., Lee K. S. and Nee A. Y. C., "Design and FEM analysis of the milled groove insert method for cooling of plastic injection moulds", The International Journal of Advanced Manufacturing Technology, 24(9-10): 715-726, (2004).
  • [22] Ahari H., Khajepour A. and Bedi S., "Laminated injection mould with conformal cooling channels: optimization, fabrication and testing", Journal of Machinery Manufacturing and Automation, 2(2): 16-24, (2013).
  • [23] Bryden B. G. and Pashby I. R., "Hot platen brazing to produce laminated steel tooling", Journal of Materials Processing Technology, 110(2): 206-210, (2001).
  • [24] Esmati K., Omidvar H., Jelokhani J. and Naderi M., "Study on the microstructure and mechanical properties of diffusion brazing joint of C17200 Copper Beryllium alloy", Materials & Design, 53: 766-773, (2014).
  • [25] Bryden B. G., Pashby I. R., Wimpenny D. I. and Adams C., "Laminated steel tooling in the aerospace industry", Materials & Design, 21(4): 403-408, (2000).
  • [26] Yoo S. and Walczyk D. F., "A preliminary study of sealing and heat transfer performance of conformal channels and cooling fins in laminated tooling", Journal of Manufacturing Science and Engineering, 129(2): 388-399, (2007).
  • [27] Eiamsa-Ard K. and Wannissorn K., "Conformal bubbler cooling for molds by metal deposition process", Computer-Aided Design, 69: 126-133, (2015).
  • [28] Shinde M. S. and Ashtankar K. M., “Additive manufacturing-assisted conformal coolingchannels in mold manufacturing processes”, Adv. Mech. Eng., 9(5): 1687814017699764, (2017).
  • [29] Åsberg M., Fredriksson G., Hatami S., Fredriksson W. and Krakhmalev P., "Influence of post treatment on microstructure, porosity and mechanical properties of additive manufactured H13 tool steel", Materials Science and Engineering: A, 742: 584-589, (2019).
  • [30] Jahan S. A., Wu T., Zhang Y., Zhang J., Tovar A. and Elmounayri H., "Thermo-mechanical design optimization of conformal cooling channels using design of experiments approach", Procedia Manufacturing, 10: 898-911, (2017).
  • [31] Göktaş M., Güldaş A. and Bayraktar Ö., “Cooling of plastic injection moulds using design adaptive cooling canals”, International Conference on Engineering and Natural Science (ICENS 2016), Sarajevo, 1987-1993, (2016).
  • [32] Güldaş A. and Göktaş M., “Comparson of straight, spiral conformal and zig-zag conformal cooling channels in plastic injection molds”, International Symposium on Innovative Approaches in Scientific Studies (ISAS 2019), Ankara, 4(1): 395-399, (2019).
  • [33] Güldaş A. and Göktaş M., “Production of Plastic Injection Molds with Conformal Cooling Channels by Laminated Brazing Method”, Gazi University Journal of Science, 33(3): 780-789. (2020).
  • [34] Jahan S. A. and El-Mounayri H., "Optimal conformal cooling channels in 3D printed dies for plastic injection molding", Procedia Manufacturing, 5: 888-900, (2016).
  • [35] Wang, Y., Yu, K.-M., and Wang, C.C., “Spiral and conformal cooling in plastic injection molding”, Computer-Aided Design, 63: 1-11, (2015).
  • [36] Park, H. S., Dang, X. P., Nguyen, D. S. and Kumar, S., “Design of advanced injection mold to increase cooling efficiency”, International Journal of Precision Engineering and Manufacturing-Green Technology, 7(2): 319-328, (2020).
  • [37] Marin, F., de Miranda, J.R. and Souza, A.F., “Study of the design of cooling channels for polymers injection molds”, Polymer Engineering & Science, 58(4): 552-559, (2018).
  • [38] Chung, C.-Y., “Integrated optimum layout of conformal cooling channels and optimal injection molding process parameters for optical lenses”, Applied Sciences, 9(20): 4341, (2019).

Comparison of Coolant Flow Strategies for Conformal Cooling Channels in Plastic Injection Molding

Year 2021, , 1249 - 1255, 01.09.2021
https://doi.org/10.2339/politeknik.639637

Abstract

In order to increase the production speed and improve product quality in plastic injection molding, more efficient cooling is required for conformal cooling channels. In this study, the cooling efficiency of the conformal channels with spiral, zigzag and parallel flow strategies designed by a systematic design method and straight cooling channels in plastic injection molds were investigated. For this purpose, numerical cooling and warp analyzes were performed and the effects of cooling channels on the cycle time and warpage on the plastic part were determined. With the use of a conformal cooling channels instead of a linear channel, the cooling time has been reduced by up to 51% and the amount of distortion up to 25%. The shortest cycle time was obtained in the spiral-shaped channel and the lowest warpage was obtained with the zigzag-shaped channel. Plastic injection molds with spiral and linear cooling channels were manufactured, production tests were made and the experimental results obtained were compared with the analysis results. It has been observed that the numerical and experimental results are compatible with each other.

Project Number

07/2018-08

References

  • [1] Qiao H., "A systematic computer-aided approach to cooling system optimal design in plastic injection molding", International journal of mechanical sciences, 48(4): 430-439, (2006).
  • [2] Hassan H., Regnier N., Lebot C., Pujos C. and Defaye G., “Effect of cooling system on the polymer temperature and solidification during injection molding”, Applied Thermal Engineering, 29(8-9): 1786-1791, (2009).
  • [3] Dimla D. E., Camilotto M. and Miani. F., "Design and optimisation of conformal cooling channels in injection moulding tools", Journal of Materials Processing Technology, 164: 1294-1300, (2005).
  • [4] Yadegari M., Masoumi H. and Gheisari M., "Optimization of cooling channels in plastic injection molding", International Journal of Applied Engineering Research, 11(8): 5777-5780, (2016).
  • [5] Zhou H. and Li D., "Mold cooling simulation of the pressing process in TV panel production", Simulation Modelling Practice and Theory, 13(3): 273-285, (2005).
  • [6] Wang G. L., Zhao G. Q. and Wang X. X., "Heating/cooling channels design for an automotive interior part and its evaluation in rapid heat cycle molding", Materials & Design, 59: 310-322, (2014).
  • [7] Li C. G., Li C. L., Liu Y. and Huang Y., “A new C-space method to automate the layout design of injection mould cooling system”, Computer-Aided Design, 44(9): 811-823, (2012).
  • [8] Kovács J. G. and Sikló B., "Investigation of cooling effect at corners in injection molding", International Communications in Heat and Mass Transfer, 38(10): 1330-1334, (2011).
  • [9] Altaf K., Raghavan V. R. and Rani A. M. A., "Comparative thermal analysis of circular and profiled cooling channels for injection mold tools", Journal of Applied Sciences, 11(11): 2068-2071, (2011).
  • [10] Saifullah A. B. M., Masood S. H. and Sbarski I., "New cooling channel design for injection moulding", Proceedings of the World Congress on Engineering, 1:1-4, (2009).
  • [11] Khan M., Afaq S. K., Khan N. U. and Ahmad S., "Cycle time reduction in injection molding process by selection of robust cooling channel design", ISRN Mechanical Engineering, 2014:1-8, (2014).
  • [12] Kitayama S., Tamada K., Takano M. and Aiba S., "Numerical and experimental investigation on process parameters optimization in plastic injection molding for weldlines reduction and clamping force minimization", The International Journal of Advanced Manufacturing Technology, 97(5-8): 2087-2098, (2018).
  • [13] Lu C. T., Chen C. H. and Tseng S. C., "Application of conformal cooling to reduce cooling time and warpage of a U-shaped plate", AIP Conference Proceedings, 2065(1): 030007, (2019).
  • [14] Singraur, Deepika S., Bhushan T. Patil and Vasim A. Shaikh. "Defect Minimization of an Injection Molded Plastic Component Using Conformal Cooling Channels", Materials Science Forum, Trans Tech Publications Ltd, Vol. 1019: 205-210, (2021).
  • [15] Marin, F., de Souza, A. F., Ahrens, C. H. and de Lacalle, L. N. L., "A new hybrid process combining machining and selective laser melting to manufacture an advanced concept of conformal cooling channels for plastic injection molds", The International Journal of Advanced Manufacturing Technology, 1-16, (2021).
  • [16] Purav, Advait C., Deepika S. Singraur, and D. S. S. Sudhakar. "Investigations into performance of conventional and conformal cooling channels of a plastic injection mold", IOP Conference Series: Materials Science and Engineering, IOP Publishing, 1070:1, 012122, (2021).
  • [17] Kuo, Chil-Chyuan, and Jia-Qi Wu. "Development of a low-cost epoxy resin mold with high cooling efficiency", The International Journal of Advanced Manufacturing Technology, 1-22, (2021).
  • [18] Rahim S. Z. A., Sharif S., Zain A. M., Nasir S. M. and Mohd Saad R., "Improving the quality and productivity of molded parts with a new design of conformal cooling channels for the injection molding process", Advances in polymer technology, 35(1): 21524, (2016).
  • [19] Dang X. P. and Park H. S., "Design of U-shape milled groove conformal cooling channels for plastic injection mold", International Journal of precision engineering and manufacturing, 12(1): 73-84, (2011).
  • [20] Ferreira J. C. and Mateus A., "Studies of rapid soft tooling with conformal cooling channels for plastic injection moulding", Journal of Materials Processing Technology, 142(2): 508-516, (2003).
  • [21] Sun Y. F., Lee K. S. and Nee A. Y. C., "Design and FEM analysis of the milled groove insert method for cooling of plastic injection moulds", The International Journal of Advanced Manufacturing Technology, 24(9-10): 715-726, (2004).
  • [22] Ahari H., Khajepour A. and Bedi S., "Laminated injection mould with conformal cooling channels: optimization, fabrication and testing", Journal of Machinery Manufacturing and Automation, 2(2): 16-24, (2013).
  • [23] Bryden B. G. and Pashby I. R., "Hot platen brazing to produce laminated steel tooling", Journal of Materials Processing Technology, 110(2): 206-210, (2001).
  • [24] Esmati K., Omidvar H., Jelokhani J. and Naderi M., "Study on the microstructure and mechanical properties of diffusion brazing joint of C17200 Copper Beryllium alloy", Materials & Design, 53: 766-773, (2014).
  • [25] Bryden B. G., Pashby I. R., Wimpenny D. I. and Adams C., "Laminated steel tooling in the aerospace industry", Materials & Design, 21(4): 403-408, (2000).
  • [26] Yoo S. and Walczyk D. F., "A preliminary study of sealing and heat transfer performance of conformal channels and cooling fins in laminated tooling", Journal of Manufacturing Science and Engineering, 129(2): 388-399, (2007).
  • [27] Eiamsa-Ard K. and Wannissorn K., "Conformal bubbler cooling for molds by metal deposition process", Computer-Aided Design, 69: 126-133, (2015).
  • [28] Shinde M. S. and Ashtankar K. M., “Additive manufacturing-assisted conformal coolingchannels in mold manufacturing processes”, Adv. Mech. Eng., 9(5): 1687814017699764, (2017).
  • [29] Åsberg M., Fredriksson G., Hatami S., Fredriksson W. and Krakhmalev P., "Influence of post treatment on microstructure, porosity and mechanical properties of additive manufactured H13 tool steel", Materials Science and Engineering: A, 742: 584-589, (2019).
  • [30] Jahan S. A., Wu T., Zhang Y., Zhang J., Tovar A. and Elmounayri H., "Thermo-mechanical design optimization of conformal cooling channels using design of experiments approach", Procedia Manufacturing, 10: 898-911, (2017).
  • [31] Göktaş M., Güldaş A. and Bayraktar Ö., “Cooling of plastic injection moulds using design adaptive cooling canals”, International Conference on Engineering and Natural Science (ICENS 2016), Sarajevo, 1987-1993, (2016).
  • [32] Güldaş A. and Göktaş M., “Comparson of straight, spiral conformal and zig-zag conformal cooling channels in plastic injection molds”, International Symposium on Innovative Approaches in Scientific Studies (ISAS 2019), Ankara, 4(1): 395-399, (2019).
  • [33] Güldaş A. and Göktaş M., “Production of Plastic Injection Molds with Conformal Cooling Channels by Laminated Brazing Method”, Gazi University Journal of Science, 33(3): 780-789. (2020).
  • [34] Jahan S. A. and El-Mounayri H., "Optimal conformal cooling channels in 3D printed dies for plastic injection molding", Procedia Manufacturing, 5: 888-900, (2016).
  • [35] Wang, Y., Yu, K.-M., and Wang, C.C., “Spiral and conformal cooling in plastic injection molding”, Computer-Aided Design, 63: 1-11, (2015).
  • [36] Park, H. S., Dang, X. P., Nguyen, D. S. and Kumar, S., “Design of advanced injection mold to increase cooling efficiency”, International Journal of Precision Engineering and Manufacturing-Green Technology, 7(2): 319-328, (2020).
  • [37] Marin, F., de Miranda, J.R. and Souza, A.F., “Study of the design of cooling channels for polymers injection molds”, Polymer Engineering & Science, 58(4): 552-559, (2018).
  • [38] Chung, C.-Y., “Integrated optimum layout of conformal cooling channels and optimal injection molding process parameters for optical lenses”, Applied Sciences, 9(20): 4341, (2019).
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Mustafa Göktaş 0000-0001-8742-9114

Abdulmecit Güldaş 0000-0002-1865-2272

Project Number 07/2018-08
Publication Date September 1, 2021
Submission Date October 29, 2019
Published in Issue Year 2021

Cite

APA Göktaş, M., & Güldaş, A. (2021). Plastik Enjeksiyon Kalıplamada Şekil Uyumlu Soğutma Kanalları için Soğutma Sıvısı Akış Stratejilerinin Karşılaştırılması. Politeknik Dergisi, 24(3), 1249-1255. https://doi.org/10.2339/politeknik.639637
AMA Göktaş M, Güldaş A. Plastik Enjeksiyon Kalıplamada Şekil Uyumlu Soğutma Kanalları için Soğutma Sıvısı Akış Stratejilerinin Karşılaştırılması. Politeknik Dergisi. September 2021;24(3):1249-1255. doi:10.2339/politeknik.639637
Chicago Göktaş, Mustafa, and Abdulmecit Güldaş. “Plastik Enjeksiyon Kalıplamada Şekil Uyumlu Soğutma Kanalları için Soğutma Sıvısı Akış Stratejilerinin Karşılaştırılması”. Politeknik Dergisi 24, no. 3 (September 2021): 1249-55. https://doi.org/10.2339/politeknik.639637.
EndNote Göktaş M, Güldaş A (September 1, 2021) Plastik Enjeksiyon Kalıplamada Şekil Uyumlu Soğutma Kanalları için Soğutma Sıvısı Akış Stratejilerinin Karşılaştırılması. Politeknik Dergisi 24 3 1249–1255.
IEEE M. Göktaş and A. Güldaş, “Plastik Enjeksiyon Kalıplamada Şekil Uyumlu Soğutma Kanalları için Soğutma Sıvısı Akış Stratejilerinin Karşılaştırılması”, Politeknik Dergisi, vol. 24, no. 3, pp. 1249–1255, 2021, doi: 10.2339/politeknik.639637.
ISNAD Göktaş, Mustafa - Güldaş, Abdulmecit. “Plastik Enjeksiyon Kalıplamada Şekil Uyumlu Soğutma Kanalları için Soğutma Sıvısı Akış Stratejilerinin Karşılaştırılması”. Politeknik Dergisi 24/3 (September 2021), 1249-1255. https://doi.org/10.2339/politeknik.639637.
JAMA Göktaş M, Güldaş A. Plastik Enjeksiyon Kalıplamada Şekil Uyumlu Soğutma Kanalları için Soğutma Sıvısı Akış Stratejilerinin Karşılaştırılması. Politeknik Dergisi. 2021;24:1249–1255.
MLA Göktaş, Mustafa and Abdulmecit Güldaş. “Plastik Enjeksiyon Kalıplamada Şekil Uyumlu Soğutma Kanalları için Soğutma Sıvısı Akış Stratejilerinin Karşılaştırılması”. Politeknik Dergisi, vol. 24, no. 3, 2021, pp. 1249-55, doi:10.2339/politeknik.639637.
Vancouver Göktaş M, Güldaş A. Plastik Enjeksiyon Kalıplamada Şekil Uyumlu Soğutma Kanalları için Soğutma Sıvısı Akış Stratejilerinin Karşılaştırılması. Politeknik Dergisi. 2021;24(3):1249-55.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.