Research Article
BibTex RIS Cite

Yüksek Oranda Eş Parçacık Boyutlu CdSe Kuantum Noktaların Sentezi ve Optiksel Özelliklerinin Parçacık Boyutlarına Bağlılığı

Year 2021, , 25 - 30, 01.03.2021
https://doi.org/10.2339/politeknik.639950

Abstract

Benzersiz
elektriksel ve optik özelliklerinden dolayı yarıiletken kuantum noktalar birçok
uygulama alanına sahiptirler. Son yıllarda CdSe kuantum noktalar en fazla
tercih edilen nanomalzemelerin başında yer almaktadır. Sıcak enjeksiyon
metodunu kullanarak yüksek oranda eş parçacık boyutuna sahip ve altıgen tip bir
simetriye sahip çinko blend kristal tipinde CdSe kuantum noktalar sentezlendi.
Elde edilen numunelerin yapıları ve özellikleri UV-Vis, fotolüminesans, XRD ve
TEM karakterizasyon metodlarıyla aydınlatıldı. 1S, 2S ve 1P absorbsiyon
geçişleri ve Stoke kayma miktarlarının malzeme boyutlarıyla olan ilişkileri
incelendi.

Supporting Institution

Düzce Üniversitesi BAP

Project Number

2017.06.03.592

References

  • [1] A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, ‘Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells’, Chem. Rev., vol. 110, no. 11, pp. 6873–6890, 2010.
  • [2] E. Elibol, P. S. Elibol, M. Cadırcı, and N. Tutkun, ‘Improving the performance of CdTe QDSSCs by chloride treatment and parameter optimization’, Mater. Sci. Semicond. Process., vol. 96, pp. 30–40, Jun. 2019.
  • [3] S. A. Mcdonald et al., ‘Solution-processed PbS quantum dot infrared photodetectors and photovoltaics’, Nat. Mater., vol. 4, no. 2, pp. 138–142, Feb. 2005.
  • [4] V. Sukhovatkin, S. Hinds, L. Brzozowski, and E. H. Sargent, ‘Colloidal Quantum-Dot Photodetectors Exploiting Multiexciton Generation’, Science (80-. )., vol. 324, no. 5934, pp. 1542–1544, 2009.
  • [5] Y. Yang et al., ‘High-efficiency light-emitting devices based on quantum dots with tailored nanostructures’, Nat. Photonics, vol. 9, no. 4, pp. 259–265, Apr. 2015.
  • [6] S. Zhu et al., ‘Strongly green-photoluminescent graphene quantum dots for bioimaging applications’, Chem. Commun., vol. 47, no. 24, pp. 6858–6860, Jun. 2011.
  • [7] N. Shukla and M. M. Nigra, ‘Synthesis of CdSe quantum dots with luminescence in the violet region of the solar spectrum’, Luminescence, vol. 25, no. 1, pp. 14–18, 2010.
  • [8] J. Park, J. Joo, G. K. Soon, Y. Jang, and T. Hyeon, ‘Synthesis of monodisperse spherical nanocrystals’, Angewandte Chemie - International Edition, vol. 46, no. 25. John Wiley & Sons, Ltd, pp. 4630–4660, 18-Jun-2007.
  • [9] Y. Yin and A. P. Alivisatos, ‘Colloidal nanocrystal synthesis and the organic-inorganic interface’, Nature, vol. 437, no. 7059. Nature Publishing Group, pp. 664–670, 28-Sep-2005.
  • [10] M. Bawendi, ‘The Quantum Mechanics Of Larger Semiconductor Clusters (’, Annu. Rev. Phys. Chem., vol. 41, no. 1, pp. 477–496, Oct. 1990.
  • [11] M. B. Mohamed, D. Tonti, A. Al-Salman, A. Chemseddine, and M. Chergui, ‘Synthesis of high quality zinc blende CdSe nanocrystals.’, J. Phys. Chem. B, vol. 109, no. 21, pp. 10533–7, 2005.
  • [12] J. Park, J. Joo, G. K. Soon, Y. Jang, and T. Hyeon, ‘Synthesis of monodisperse spherical nanocrystals’, Angew. Chemie - Int. Ed., vol. 46, no. 25, pp. 4630–4660, 2007.
  • [13] Victor I. Klimov, ‘Nanocrystal Quantum Dots’, in CRC Press Taylor & Francis Group, 2nd ed., Victor I. Klimov, Ed. Boca Raton London New York: CRC Press Taylor & Francis Group, 2010, pp. 147–213.
  • [14] W. W. Yu, L. Qu, W. Guo, and X. Peng, ‘Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals’, Chem. Mater., vol. 15, no. 14, pp. 2854–2860, Jul. 2003.
  • [15] A. M. Nightingale and J. C. Demello, ‘Improving the ensemble optical properties of InP quantum dots by indium precursor modification’, J. Mater. Chem. C, vol. 4, no. 36, pp. 8454–8458, 2016.
  • [16] A. Saha, K. V. Chellappan, K. S. Narayan, J. Ghatak, R. Datta, and R. Viswanatha, ‘Near-unity quantum yield in semiconducting nanostructures: Structural understanding leading to energy efficient applications’, J. Phys. Chem. Lett., vol. 4, no. 20, pp. 3544–3549, Oct. 2013.
  • [17] D. Norris and M. Bawendi, ‘Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots’, Phys. Rev. B - Condens. Matter Mater. Phys., vol. 53, no. 24, pp. 16338–16346, Jun. 1996.
  • [18] C. B. Murray, D. J. Norris, and M. G. Bawendi, ‘Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites’, J. Am. Chem. Soc., vol. 115, no. 19, pp. 8706–8715, Sep. 1993.

Synthesis of Highly Monodisperse CdSe Quantum Dots and Size Dependency of Optical Properties

Year 2021, , 25 - 30, 01.03.2021
https://doi.org/10.2339/politeknik.639950

Abstract

Semiconductor quantum dots have wide application areas as they have unique electrical and optical properties. In recent years, CdSe quantum dots are one of the most preferred nanomaterials. Highly monodisperse zinc blend CdSe quantum dots were synthesized using hot injection method. The structure and optical properties of the samples were determined by UV-Vis, photoluminescence, XRD and TEM methods. As a result, the difference between 2S-1P absorption transitions did not change with particle size. However, the difference between 1S-2S and 1S-1P transitions were found to be inversely proportional to particle size.  The FWHM value of the photoluminescence spectrum of the smallest sample has decreased to 25 mm and Stokes shifts were observed to be 0.06 eV.

Project Number

2017.06.03.592

References

  • [1] A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, ‘Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells’, Chem. Rev., vol. 110, no. 11, pp. 6873–6890, 2010.
  • [2] E. Elibol, P. S. Elibol, M. Cadırcı, and N. Tutkun, ‘Improving the performance of CdTe QDSSCs by chloride treatment and parameter optimization’, Mater. Sci. Semicond. Process., vol. 96, pp. 30–40, Jun. 2019.
  • [3] S. A. Mcdonald et al., ‘Solution-processed PbS quantum dot infrared photodetectors and photovoltaics’, Nat. Mater., vol. 4, no. 2, pp. 138–142, Feb. 2005.
  • [4] V. Sukhovatkin, S. Hinds, L. Brzozowski, and E. H. Sargent, ‘Colloidal Quantum-Dot Photodetectors Exploiting Multiexciton Generation’, Science (80-. )., vol. 324, no. 5934, pp. 1542–1544, 2009.
  • [5] Y. Yang et al., ‘High-efficiency light-emitting devices based on quantum dots with tailored nanostructures’, Nat. Photonics, vol. 9, no. 4, pp. 259–265, Apr. 2015.
  • [6] S. Zhu et al., ‘Strongly green-photoluminescent graphene quantum dots for bioimaging applications’, Chem. Commun., vol. 47, no. 24, pp. 6858–6860, Jun. 2011.
  • [7] N. Shukla and M. M. Nigra, ‘Synthesis of CdSe quantum dots with luminescence in the violet region of the solar spectrum’, Luminescence, vol. 25, no. 1, pp. 14–18, 2010.
  • [8] J. Park, J. Joo, G. K. Soon, Y. Jang, and T. Hyeon, ‘Synthesis of monodisperse spherical nanocrystals’, Angewandte Chemie - International Edition, vol. 46, no. 25. John Wiley & Sons, Ltd, pp. 4630–4660, 18-Jun-2007.
  • [9] Y. Yin and A. P. Alivisatos, ‘Colloidal nanocrystal synthesis and the organic-inorganic interface’, Nature, vol. 437, no. 7059. Nature Publishing Group, pp. 664–670, 28-Sep-2005.
  • [10] M. Bawendi, ‘The Quantum Mechanics Of Larger Semiconductor Clusters (’, Annu. Rev. Phys. Chem., vol. 41, no. 1, pp. 477–496, Oct. 1990.
  • [11] M. B. Mohamed, D. Tonti, A. Al-Salman, A. Chemseddine, and M. Chergui, ‘Synthesis of high quality zinc blende CdSe nanocrystals.’, J. Phys. Chem. B, vol. 109, no. 21, pp. 10533–7, 2005.
  • [12] J. Park, J. Joo, G. K. Soon, Y. Jang, and T. Hyeon, ‘Synthesis of monodisperse spherical nanocrystals’, Angew. Chemie - Int. Ed., vol. 46, no. 25, pp. 4630–4660, 2007.
  • [13] Victor I. Klimov, ‘Nanocrystal Quantum Dots’, in CRC Press Taylor & Francis Group, 2nd ed., Victor I. Klimov, Ed. Boca Raton London New York: CRC Press Taylor & Francis Group, 2010, pp. 147–213.
  • [14] W. W. Yu, L. Qu, W. Guo, and X. Peng, ‘Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals’, Chem. Mater., vol. 15, no. 14, pp. 2854–2860, Jul. 2003.
  • [15] A. M. Nightingale and J. C. Demello, ‘Improving the ensemble optical properties of InP quantum dots by indium precursor modification’, J. Mater. Chem. C, vol. 4, no. 36, pp. 8454–8458, 2016.
  • [16] A. Saha, K. V. Chellappan, K. S. Narayan, J. Ghatak, R. Datta, and R. Viswanatha, ‘Near-unity quantum yield in semiconducting nanostructures: Structural understanding leading to energy efficient applications’, J. Phys. Chem. Lett., vol. 4, no. 20, pp. 3544–3549, Oct. 2013.
  • [17] D. Norris and M. Bawendi, ‘Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots’, Phys. Rev. B - Condens. Matter Mater. Phys., vol. 53, no. 24, pp. 16338–16346, Jun. 1996.
  • [18] C. B. Murray, D. J. Norris, and M. G. Bawendi, ‘Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites’, J. Am. Chem. Soc., vol. 115, no. 19, pp. 8706–8715, Sep. 1993.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Musa Çadırcı 0000-0002-5188-4593

Tuna Demirci 0000-0001-8933-4944

Project Number 2017.06.03.592
Publication Date March 1, 2021
Submission Date October 31, 2019
Published in Issue Year 2021

Cite

APA Çadırcı, M., & Demirci, T. (2021). Yüksek Oranda Eş Parçacık Boyutlu CdSe Kuantum Noktaların Sentezi ve Optiksel Özelliklerinin Parçacık Boyutlarına Bağlılığı. Politeknik Dergisi, 24(1), 25-30. https://doi.org/10.2339/politeknik.639950
AMA Çadırcı M, Demirci T. Yüksek Oranda Eş Parçacık Boyutlu CdSe Kuantum Noktaların Sentezi ve Optiksel Özelliklerinin Parçacık Boyutlarına Bağlılığı. Politeknik Dergisi. March 2021;24(1):25-30. doi:10.2339/politeknik.639950
Chicago Çadırcı, Musa, and Tuna Demirci. “Yüksek Oranda Eş Parçacık Boyutlu CdSe Kuantum Noktaların Sentezi Ve Optiksel Özelliklerinin Parçacık Boyutlarına Bağlılığı”. Politeknik Dergisi 24, no. 1 (March 2021): 25-30. https://doi.org/10.2339/politeknik.639950.
EndNote Çadırcı M, Demirci T (March 1, 2021) Yüksek Oranda Eş Parçacık Boyutlu CdSe Kuantum Noktaların Sentezi ve Optiksel Özelliklerinin Parçacık Boyutlarına Bağlılığı. Politeknik Dergisi 24 1 25–30.
IEEE M. Çadırcı and T. Demirci, “Yüksek Oranda Eş Parçacık Boyutlu CdSe Kuantum Noktaların Sentezi ve Optiksel Özelliklerinin Parçacık Boyutlarına Bağlılığı”, Politeknik Dergisi, vol. 24, no. 1, pp. 25–30, 2021, doi: 10.2339/politeknik.639950.
ISNAD Çadırcı, Musa - Demirci, Tuna. “Yüksek Oranda Eş Parçacık Boyutlu CdSe Kuantum Noktaların Sentezi Ve Optiksel Özelliklerinin Parçacık Boyutlarına Bağlılığı”. Politeknik Dergisi 24/1 (March 2021), 25-30. https://doi.org/10.2339/politeknik.639950.
JAMA Çadırcı M, Demirci T. Yüksek Oranda Eş Parçacık Boyutlu CdSe Kuantum Noktaların Sentezi ve Optiksel Özelliklerinin Parçacık Boyutlarına Bağlılığı. Politeknik Dergisi. 2021;24:25–30.
MLA Çadırcı, Musa and Tuna Demirci. “Yüksek Oranda Eş Parçacık Boyutlu CdSe Kuantum Noktaların Sentezi Ve Optiksel Özelliklerinin Parçacık Boyutlarına Bağlılığı”. Politeknik Dergisi, vol. 24, no. 1, 2021, pp. 25-30, doi:10.2339/politeknik.639950.
Vancouver Çadırcı M, Demirci T. Yüksek Oranda Eş Parçacık Boyutlu CdSe Kuantum Noktaların Sentezi ve Optiksel Özelliklerinin Parçacık Boyutlarına Bağlılığı. Politeknik Dergisi. 2021;24(1):25-30.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.