Hava Değişim Katsayısının Kirletici Uzaklaştırma Performansına Etkisinin İncelenmesi
Year 2021,
, 453 - 459, 01.06.2021
Yunus Emre Çetin
,
Mete Avcı
,
Orhan Aydın
Abstract
Bu çalışmada, hava değişim katsayının partikül dağılımına etkisi farklı kirletici kaynak konumları için deneysel ve sayısal olarak incelenmiştir. Deneysel çalışma küçük ölçekli bir model oda üzerinde izotermal akış şartları için yürütülmüş ve kirletici olarak 0,5 µm ebatında partiküller kullanılmıştır. Partikül hareketleri, Lagrange yaklaşımı esas alınarak bir hesaplamalı akışkanlar dinamiği (HAD) yazılımı olan ANSYS Fluent programında modellenmiştir. Ana akış bölgesi dışında yer alan kirleticilerin daha yüksek konsantrasyon değerlerine yol açtığı tespit edilmiştir.
Bununla beraber, hava değişim katsayısındaki artışın bu bölgedeki kirletici konsantrasyonunu azaltmada daha etkili olduğu ortaya konmuştur.
Supporting Institution
TÜBİTAK
Thanks
Bu çalışma TÜBİTAK tarafından 117M488 numaralı proje ile desteklenmiştir. Desteklerinden ötürü TÜBİTAK'a teşekkür ederiz.
References
- Jones A. P., "Indoor air quality and health", Atmospheric Environment, 33: 4535–4564, (1999)
- Pope C. A., Dockery D. W., "Health effects of fine particulate air pollution: Lines that connect", Journal of the Air and Waste Management Association, 56: 709–742, (2006)
- Thurston G. D., Burnett R. T., Turner M. C., Shi Y., Krewski D., Lall R., Ito K., Jerrett M., Gapstur S. M., Ryan Diver W., Pope C. A., "Ischemic heart disease mortality and long-term exposure to source-related components of U.S. fine particle air pollution", Environmental Health Perspectives, 124: 785–794, (2016)
- Kircher K., Shi X., Patil S., Zhang K. M., "Cleanroom energy efficiency strategies: Modeling and simulation", Energy and Buildings, 42: 282–289, (2010)
- Wang X., Zhang Y., Zhao L. Y., Riskowski G. L., "Effect of ventilation rate on dust spatial distribution in a mechanically ventilated airspace", Transactions of the ASAE, 43: 1877–1884, (2000)
- Jin M., Memarzadeh F., Lee K., Chen Q., "Experimental study of ventilation performance in laboratories with chemical spills", Building and Environment, 57: 327–335, (2012)
- Memarzadeh F., Xu W., "Role of air changes per hour (ACH) in possible transmission of airborne infections", Building Simulation, 5: 15–28, (2012)
- Faulkner W.B., Memarzadeh F., Riskowski G., Hamilton K., Chang C. Z., Chang J. R., "Particulate concentrations within a reduced-scale room operated at various air exchange rates", Building and Environment, 65: 71–80, (2013)
- Faulkner W. B., Memarzadeh F., Riskowski G., Kalbasi A., Chang A. C. Z., "Effects of air exchange rate, particle size and injection place on particle concentrations within a reduced-scale room", Building and Environment, 92: 246–255, (2015)
- Posner J. D., Buchanan C. R., Dunn-Rankin D., "Measurement and prediction
of indoor air flow in a model room", Energy and Buildings, 35: 515–526, (2003)
- Zhang Z., Zhang W., Zhai Z. J., Chen Q., "Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: Part 2—comparison with experimental data from literature", HVAC&R Research, 13: 871–886, (2007)
- ANSYS Inc, Ansys Fluent Theory Guide, Canonsburg, PA, 2013
- Hinds W. C., Aerosol Technology: Properties, Behaviour, and Measurements of Airborne Particles, 2nd ed., John Wiley & Sons Inc., 1999
- Awbi H., Ventilation of buildings, 2nd ed., Spon press, London, 2003
- Nielsen P. V., Lecture Notes on Scale-Model Experiments, 1999.
http://vbn.aau.dk/en/publications/lecture-notes-on-scalemodel-experiments(d5ffe240-a869-11da-8341-000ea68e967b).html
Investigation of the Effect of Air Change Rate on Contaminant Removal Performance
Year 2021,
, 453 - 459, 01.06.2021
Yunus Emre Çetin
,
Mete Avcı
,
Orhan Aydın
Abstract
In this study, the effect of air change rate on particle dispersion is investigated experimentally and numerically for different contaminant source positions. An experimental study is carried out on a reduced scale model for isothermal flow conditions and 0.5 µm particles are used as contaminants. Particle motions, based on Lagrange approach, are modeled with a computational fluid dynamics (CFD) software ANSYS Fluent. It is found that pollutants outside the main flow region lead to 12 times higher concentration values. In addition, it is determined that the increase in air change rate decreases the concentration of pollutants in this region by 75%.
References
- Jones A. P., "Indoor air quality and health", Atmospheric Environment, 33: 4535–4564, (1999)
- Pope C. A., Dockery D. W., "Health effects of fine particulate air pollution: Lines that connect", Journal of the Air and Waste Management Association, 56: 709–742, (2006)
- Thurston G. D., Burnett R. T., Turner M. C., Shi Y., Krewski D., Lall R., Ito K., Jerrett M., Gapstur S. M., Ryan Diver W., Pope C. A., "Ischemic heart disease mortality and long-term exposure to source-related components of U.S. fine particle air pollution", Environmental Health Perspectives, 124: 785–794, (2016)
- Kircher K., Shi X., Patil S., Zhang K. M., "Cleanroom energy efficiency strategies: Modeling and simulation", Energy and Buildings, 42: 282–289, (2010)
- Wang X., Zhang Y., Zhao L. Y., Riskowski G. L., "Effect of ventilation rate on dust spatial distribution in a mechanically ventilated airspace", Transactions of the ASAE, 43: 1877–1884, (2000)
- Jin M., Memarzadeh F., Lee K., Chen Q., "Experimental study of ventilation performance in laboratories with chemical spills", Building and Environment, 57: 327–335, (2012)
- Memarzadeh F., Xu W., "Role of air changes per hour (ACH) in possible transmission of airborne infections", Building Simulation, 5: 15–28, (2012)
- Faulkner W.B., Memarzadeh F., Riskowski G., Hamilton K., Chang C. Z., Chang J. R., "Particulate concentrations within a reduced-scale room operated at various air exchange rates", Building and Environment, 65: 71–80, (2013)
- Faulkner W. B., Memarzadeh F., Riskowski G., Kalbasi A., Chang A. C. Z., "Effects of air exchange rate, particle size and injection place on particle concentrations within a reduced-scale room", Building and Environment, 92: 246–255, (2015)
- Posner J. D., Buchanan C. R., Dunn-Rankin D., "Measurement and prediction
of indoor air flow in a model room", Energy and Buildings, 35: 515–526, (2003)
- Zhang Z., Zhang W., Zhai Z. J., Chen Q., "Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: Part 2—comparison with experimental data from literature", HVAC&R Research, 13: 871–886, (2007)
- ANSYS Inc, Ansys Fluent Theory Guide, Canonsburg, PA, 2013
- Hinds W. C., Aerosol Technology: Properties, Behaviour, and Measurements of Airborne Particles, 2nd ed., John Wiley & Sons Inc., 1999
- Awbi H., Ventilation of buildings, 2nd ed., Spon press, London, 2003
- Nielsen P. V., Lecture Notes on Scale-Model Experiments, 1999.
http://vbn.aau.dk/en/publications/lecture-notes-on-scalemodel-experiments(d5ffe240-a869-11da-8341-000ea68e967b).html