Research Article
BibTex RIS Cite

Newmark Yöntemine Göre Zemin Deplasmanının Tahmin Edilmesi

Year 2021, , 943 - 952, 01.09.2021
https://doi.org/10.2339/politeknik.665258

Abstract

Deprem kaynaklı meydana gelmesi muhtemel zemin deplasman miktarının tahmin edilmesi hem üstyapılar hem de alt yapılar için önem arz etmektedir. Bu hareketin miktarını tahmin edebilmek için literatürde bazı yöntemler geliştirilmiştir. Bu yöntemlerin en önemlilerinden biri de Newmark Kayan Blok Modeli’dir. Bu yaklaşıma dayalı olarak birçok regresyon formülü üretilmiştir. Öncelikle daha önce ortaya konan bu formüllerin bu çalışmada kullanılan dünya genelindeki deprem verilerine göre yeniden analizi gerçekleştirilmiş ve elde edilen sonuçlar irdelenmiştir. Sonrasında bu makale kapsamında yeni bir regresyon denklemi elde edilmiştir. Regresyon analizlerinin karşılaştırılması sonucunda, yeni formülün standart sapma ve R2 açısından daha uygun sonuçlara sahip olduğu tespit edilmiştir. 

References

  • Url-1 < http://www.hurriyet.com.tr/>, erişim tarihi: 14.01.2019.
  • Newmark, N.M.Effects of earthquakes on damsandembankments. Geotechnique 15, 139–159, 1965.
  • Siyahi B., Erdik M., Sesetyan K., Demircioğlu M.B., Akman H., Sıvılaşma ve şev stabilitesi hassaslığı ve potansiyeli haritaları: İstanbul örneği, Besinci Ulusal Deprem Mühendisliği Konferansı, 26-30 Mayıs, İstanbul, 2003.
  • Ambraseys, N.N., Menu, J.M., Earthquake-induced ground displacements. Earthquake Engineering and Structural Dynamics 16, 985–1006, 1998
  • Wilson, R.C., Keefer, D.K., Dynamic analysis of a slope failure from the 6 August 1979 Coyote Lake, California, earthquake. Bulletin of the Seismological Society of America 73, 863–877, 1983
  • Jibson, R.W., Regression models for estimating coseismic landslide displacement. Engineering Geology, 91:209-218, 2007
  • Wieczorek, G.F., Wilson, R.C., Harp, E.L., Map showing slope stability during earthquakes in San Mateo County California: US Geological Survey Miscellaneous Investigations Map I-1257-E, scale 1:62,500, 1985
  • Houston, S.L., Houston, W.N., Padilla, J.M., Microcomputeraided evaluation of earthquake-induced permanent slope displacements. Microcomputers in Civil Engineering 2, 207–222, 1987
  • Jibson, R.W., Predicting earthquake-induced landslide displacements using Newmark's sliding block analysis. Transportation Research Record 1411, 9–17, 1993
  • Jibson, R.W., Keefer, D.K., Analysis of the seismic origin of landslides: examples from the NewMadrid seismic zone. Geological Society of America Bulletin 105, 521–536, 1993
  • California Division of Mines and Geology, Guidelines for evaluating and mitigating seismic hazards in California. California Division of Mines and Geology Special Publication vol. 117. 74 pp, 1997
  • Jibson, R.W., Harp, E.L., Michael, J.M., A method for producing digital probabilistic seismic landslide hazard maps: an example from the Los Angeles, California area. US Geological Survey Open-File Report 98-113. . 17 pp, 1998
  • Mankelow, J.M.,Murphy,W., Using GIS in the probabilistic assessment of earthquake triggered landslide hazards. Journal of Earthquake Engineering 2, 593–623, 1998
  • Bray, J.D., Rathje, E.M., Earthquake-induced displacements of solid-wastelandfills. Journal of Geotechnical and Geoenvironmental Engineering 124, 242–253, 1998
  • Luzi, L., Pergalani, F., Slope instability in static and dynamic conditions for urban planning: the “Oltre Po Pavese” case history (Regione Lombardia — Italy). Natural Hazards 20, 57–82, 1999
  • Miles, S.B., Ho, C.L., Rigorous landslide hazard zonation using Newmark's method and stochastic ground motion simulation. Soil Dynamics and Earthquake Engineering 18, 305–323, 1999
  • Jibson, R.W., Harp, E.L., Michael, J.M., A method for producing digital probabilistic seismic landslide hazard maps. Engineering Geology 58, 271–289, 2000
  • Miles, S.B., Keefer, D.K., Evaluation of seismic slope performance models using a regional case study. Environmental and Engineering Geoscience 6, 25–39, 2000
  • Miles, S.B., Keefer, D.K., Seismic Landslide Hazard for the City of Berkeley, California. US Geological Survey Miscellaneous Field Studies Map MF-2378, 2001
  • Del Gaudio, V., Pierri, P., Wasowski, J., An approach to time-probabilistic evaluation of seismically induced landslide hazard. Bulletin. Seismological Society of America 93, 557–569, 2003
  • Pradel, D., Smith, P.M., Stewart, J.P., Raad, G., Case history of landslide movement during the Northridge earthquake. Journal of Geotechnical and Geoenvironmental Engineering 131, 1360–1369, 2005
  • Haneberg, W.C., Effects of digital elevation model errors on spatially distributed seismic slope stability calculations: an example from Seattle, Washington. Environmental and Engineering Geoscience 12, 247–260, 2006
  • Rathje, E., Saygili, G., A vector hazard approach for Newmark sliding block analysis. Proceedings, New Zealand Workshop on Geotechnical Earthquake Engineering Workshop, 20–23 November. University of Canterbury, Christchurch, New Zealand, pp. 205–216, 2006
  • Arias, A., A measure of earthquake intensity. In: Hansen, R.J. (Ed.), Seismic Design for Nuclear Power Plants. Massachusetts Institute of Technology Press, Cambridge,MA, pp. 438–483, 1970
  • Hesieh Shang-Yu, Chyi-Tyi Lee. Empirical estimation of the Newmark desplacement from the Arias intensity and critical acceleration. Engineering Geology 122, 34–42,2011
  • Jibson, R.W. Regression models for estimating coseismic landslide displacement. Engineering Geology, 91:209-218, 2007.
  • Yiğit, A., Lav, M.,A, Gedikli, A., Türkiye Deprem Verilerine Göre Newmark Yönteminin Uygulanması, 7. Uluslararası Katılımlı Geoteknik Sempozyumu, İstanbul , İMO, 2017.
  • Url-2 < https://deprem.afad.gov.tr/>
  • Url-3 < http://peer.berkeley.edu/>

Estimation of Ground Displacement According to Newmark Method

Year 2021, , 943 - 952, 01.09.2021
https://doi.org/10.2339/politeknik.665258

Abstract

Prediction of the amount of possible ground displacement caused by an earthquake is important for both superstructures and infrastructures. In literature, some methods have been developed to estimate the amount of this movement. One of the most important models of these methods is Newmark Sliding Block Model. Many regression formulas have been produced based on this approximation. Primarily, these formulas have been re-analyzed according to world-wide earthquake data used in this study and the results have been examined. Then, a new regression equation has been obtained within the scope of this paper. In consequence of the comparison of the regression analyses, it has been determined that the new formula has more appropriate results in terms of the standart deviation and R2.

References

  • Url-1 < http://www.hurriyet.com.tr/>, erişim tarihi: 14.01.2019.
  • Newmark, N.M.Effects of earthquakes on damsandembankments. Geotechnique 15, 139–159, 1965.
  • Siyahi B., Erdik M., Sesetyan K., Demircioğlu M.B., Akman H., Sıvılaşma ve şev stabilitesi hassaslığı ve potansiyeli haritaları: İstanbul örneği, Besinci Ulusal Deprem Mühendisliği Konferansı, 26-30 Mayıs, İstanbul, 2003.
  • Ambraseys, N.N., Menu, J.M., Earthquake-induced ground displacements. Earthquake Engineering and Structural Dynamics 16, 985–1006, 1998
  • Wilson, R.C., Keefer, D.K., Dynamic analysis of a slope failure from the 6 August 1979 Coyote Lake, California, earthquake. Bulletin of the Seismological Society of America 73, 863–877, 1983
  • Jibson, R.W., Regression models for estimating coseismic landslide displacement. Engineering Geology, 91:209-218, 2007
  • Wieczorek, G.F., Wilson, R.C., Harp, E.L., Map showing slope stability during earthquakes in San Mateo County California: US Geological Survey Miscellaneous Investigations Map I-1257-E, scale 1:62,500, 1985
  • Houston, S.L., Houston, W.N., Padilla, J.M., Microcomputeraided evaluation of earthquake-induced permanent slope displacements. Microcomputers in Civil Engineering 2, 207–222, 1987
  • Jibson, R.W., Predicting earthquake-induced landslide displacements using Newmark's sliding block analysis. Transportation Research Record 1411, 9–17, 1993
  • Jibson, R.W., Keefer, D.K., Analysis of the seismic origin of landslides: examples from the NewMadrid seismic zone. Geological Society of America Bulletin 105, 521–536, 1993
  • California Division of Mines and Geology, Guidelines for evaluating and mitigating seismic hazards in California. California Division of Mines and Geology Special Publication vol. 117. 74 pp, 1997
  • Jibson, R.W., Harp, E.L., Michael, J.M., A method for producing digital probabilistic seismic landslide hazard maps: an example from the Los Angeles, California area. US Geological Survey Open-File Report 98-113. . 17 pp, 1998
  • Mankelow, J.M.,Murphy,W., Using GIS in the probabilistic assessment of earthquake triggered landslide hazards. Journal of Earthquake Engineering 2, 593–623, 1998
  • Bray, J.D., Rathje, E.M., Earthquake-induced displacements of solid-wastelandfills. Journal of Geotechnical and Geoenvironmental Engineering 124, 242–253, 1998
  • Luzi, L., Pergalani, F., Slope instability in static and dynamic conditions for urban planning: the “Oltre Po Pavese” case history (Regione Lombardia — Italy). Natural Hazards 20, 57–82, 1999
  • Miles, S.B., Ho, C.L., Rigorous landslide hazard zonation using Newmark's method and stochastic ground motion simulation. Soil Dynamics and Earthquake Engineering 18, 305–323, 1999
  • Jibson, R.W., Harp, E.L., Michael, J.M., A method for producing digital probabilistic seismic landslide hazard maps. Engineering Geology 58, 271–289, 2000
  • Miles, S.B., Keefer, D.K., Evaluation of seismic slope performance models using a regional case study. Environmental and Engineering Geoscience 6, 25–39, 2000
  • Miles, S.B., Keefer, D.K., Seismic Landslide Hazard for the City of Berkeley, California. US Geological Survey Miscellaneous Field Studies Map MF-2378, 2001
  • Del Gaudio, V., Pierri, P., Wasowski, J., An approach to time-probabilistic evaluation of seismically induced landslide hazard. Bulletin. Seismological Society of America 93, 557–569, 2003
  • Pradel, D., Smith, P.M., Stewart, J.P., Raad, G., Case history of landslide movement during the Northridge earthquake. Journal of Geotechnical and Geoenvironmental Engineering 131, 1360–1369, 2005
  • Haneberg, W.C., Effects of digital elevation model errors on spatially distributed seismic slope stability calculations: an example from Seattle, Washington. Environmental and Engineering Geoscience 12, 247–260, 2006
  • Rathje, E., Saygili, G., A vector hazard approach for Newmark sliding block analysis. Proceedings, New Zealand Workshop on Geotechnical Earthquake Engineering Workshop, 20–23 November. University of Canterbury, Christchurch, New Zealand, pp. 205–216, 2006
  • Arias, A., A measure of earthquake intensity. In: Hansen, R.J. (Ed.), Seismic Design for Nuclear Power Plants. Massachusetts Institute of Technology Press, Cambridge,MA, pp. 438–483, 1970
  • Hesieh Shang-Yu, Chyi-Tyi Lee. Empirical estimation of the Newmark desplacement from the Arias intensity and critical acceleration. Engineering Geology 122, 34–42,2011
  • Jibson, R.W. Regression models for estimating coseismic landslide displacement. Engineering Geology, 91:209-218, 2007.
  • Yiğit, A., Lav, M.,A, Gedikli, A., Türkiye Deprem Verilerine Göre Newmark Yönteminin Uygulanması, 7. Uluslararası Katılımlı Geoteknik Sempozyumu, İstanbul , İMO, 2017.
  • Url-2 < https://deprem.afad.gov.tr/>
  • Url-3 < http://peer.berkeley.edu/>
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Adil Yiğit 0000-0003-1045-6127

Publication Date September 1, 2021
Submission Date December 26, 2019
Published in Issue Year 2021

Cite

APA Yiğit, A. (2021). Newmark Yöntemine Göre Zemin Deplasmanının Tahmin Edilmesi. Politeknik Dergisi, 24(3), 943-952. https://doi.org/10.2339/politeknik.665258
AMA Yiğit A. Newmark Yöntemine Göre Zemin Deplasmanının Tahmin Edilmesi. Politeknik Dergisi. September 2021;24(3):943-952. doi:10.2339/politeknik.665258
Chicago Yiğit, Adil. “Newmark Yöntemine Göre Zemin Deplasmanının Tahmin Edilmesi”. Politeknik Dergisi 24, no. 3 (September 2021): 943-52. https://doi.org/10.2339/politeknik.665258.
EndNote Yiğit A (September 1, 2021) Newmark Yöntemine Göre Zemin Deplasmanının Tahmin Edilmesi. Politeknik Dergisi 24 3 943–952.
IEEE A. Yiğit, “Newmark Yöntemine Göre Zemin Deplasmanının Tahmin Edilmesi”, Politeknik Dergisi, vol. 24, no. 3, pp. 943–952, 2021, doi: 10.2339/politeknik.665258.
ISNAD Yiğit, Adil. “Newmark Yöntemine Göre Zemin Deplasmanının Tahmin Edilmesi”. Politeknik Dergisi 24/3 (September 2021), 943-952. https://doi.org/10.2339/politeknik.665258.
JAMA Yiğit A. Newmark Yöntemine Göre Zemin Deplasmanının Tahmin Edilmesi. Politeknik Dergisi. 2021;24:943–952.
MLA Yiğit, Adil. “Newmark Yöntemine Göre Zemin Deplasmanının Tahmin Edilmesi”. Politeknik Dergisi, vol. 24, no. 3, 2021, pp. 943-52, doi:10.2339/politeknik.665258.
Vancouver Yiğit A. Newmark Yöntemine Göre Zemin Deplasmanının Tahmin Edilmesi. Politeknik Dergisi. 2021;24(3):943-52.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.