In this study, rotational hypersurfaces in the 4-dimensional Euclidean space are discussed. Some relations of curvatures of hypersurfaces are given, such as the mean, Gaussian, and their minimality and flatness. In addition, Laplace-Beltrami operator has been defined for 4-dimensional hypersurfaces depending on the first fundamental form. Moreover, it is shown that each element of the 4×4 order matrix A, which satisfies the condition ∆^I R=AR, is zero, that is, the rotational hypersurface R is minimal.
In this study, rotational hypersurfaces in the 4-dimensional Euclidean space are discussed. Some relations of curvatures of hypersurfaces are given, such as the mean, Gaussian, and their minimality and flatness. In addition, Laplace-Beltrami operator has been defined for 4-dimensional hypersurfaces depending on the first fundamental form. Moreover, it is shown that each element of the 4×4 order matrix A, which satisfies the condition ∆^I R=AR, is zero, that is, the rotational hypersurface R is minimal.
Primary Language | English |
---|---|
Subjects | Engineering |
Journal Section | Research Article |
Authors | |
Publication Date | June 1, 2021 |
Submission Date | January 4, 2020 |
Published in Issue | Year 2021 |
Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.