Research Article
BibTex RIS Cite

Rotational Hypersurfaces Satisfying ∆^I R=AR in the Four-Dimensional Euclidean Space

Year 2021, , 517 - 520, 01.06.2021
https://doi.org/10.2339/politeknik.670333

Abstract

In this study, rotational hypersurfaces in the 4-dimensional Euclidean space are discussed. Some relations of curvatures of hypersurfaces are given, such as the mean, Gaussian, and their minimality and flatness. In addition, Laplace-Beltrami operator has been defined for 4-dimensional hypersurfaces depending on the first fundamental form. Moreover, it is shown that each element of the 4×4 order matrix A, which satisfies the condition ∆^I R=AR, is zero, that is, the rotational hypersurface R is minimal.

References

  • [1] K. Arslan, B. Kılıç Bayram, B. Bulca, G. Öztürk, “Generalized Rotation Surfaces in E4,” Result Math. vol. 61, pp. 315–327, 2012.
  • [2] Arvanitoyeorgos, G. Kaimakamis, M. Magid “Lorentz hypersurfaces in E4,1 satisfying ,” Illinois J. Math. vol. 53, no. 2, pp. 581–590, 2009.
  • [3] E. Bour, “Théorie de la déformation des surfaces,” J. Êcole Imperiale Polytech., vol. 22, no. 39, pp. 1–148, 1862.
  • [4] B.Y. Chen, “Total mean curvature and submanifolds of finite type,” World Scientific, Singapore, 1984.
  • [5] B.Y. Chen, M. Choi, Y.H. Kim, “Surfaces of revolution with pointwise 1-type Gauss map,” Korean Math. Soc., vol. 42, pp. 447–455, 2005.
  • [6] Q.M. Cheng, Q.R. Wan, “Complete hypersurfaces of R4 with constant mean curvature,” Monatsh. Math. vol. 118, no. 3, pp. 171–204, 1994.
  • [7] M. Choi, Y.H. Kim, “Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map,” Bull. Korean Math. Soc. vol. 38, pp. 753–761, 2001.
  • [8] F. Dillen, J. Pas, L. Verstraelen, “On surfaces of finite type in Euclidean 3-space,” Kodai Math. J. vol. 13, pp. 10–21, 1990.
  • [9] M. Do Carmo, M. Dajczer, “Helicoidal surfaces with constant mean curvature,” Tohoku Math. J. vol. 34, pp. 351–367, 1982.
  • [10] U. Dursun, N.C. Turgay, “Minimal and Pseudo-Umbilical Rotational Surfaces in Euclidean Space E4,” Mediter. J. Math. vol. 10, pp. 497–506, 2013.
  • [11] A. Ferrandez, O.J. Garay, P. Lucas, “On a certain class of conformally at Euclidean hypersurfaces,” In Global Analysis and Global Differential Geometry; Springer: Berlin, Germany, pp. 48–54. 1990.
  • [12] G. Ganchev, V. Milousheva, “General rotational surfaces in the 4-dimensional Minkowski space,” Turkish J. Math. vol. 38 pp. 883–895, 2014.
  • [13] E. Güler, “Bour's theorem and lightlike profile curve,” Yokohama Math. J., vol. 54, no. 1, pp. 55–77, 2007.
  • [14] E. Güler, M. Magid, Y. Yaylı, “Laplace Beltrami operator of a helicoidal hypersurface in four space,” J. Geom. Symmetry Phys. vol. 41, pp. 77–95, 2016.
  • [15] E. Güler, H.H. Hacısalihoğlu, Y.H. Kim The Gauss map and the third Laplace-Beltrami operator of the rotational hypersurface in 4-Space. Symmetry, 10(9), 398, 2018.
  • [16] H.B. Lawson, “Lectures on Minimal Submanifolds,” 2nd ed.; Mathematics Lecture Series 9; Publish or Perish, Inc.: Wilmington, Delaware, 1980.
  • [17] M. Magid, C. Scharlach, L. Vrancken, “Affine umbilical surfaces in R4,” Manuscripta Math. vol. 88, pp. 275–289, 1995.
  • [18] C. Moore, “Surfaces of rotation in a space of four dimensions,” Ann. Math., vol. 21, pp. 81–93, 1919.
  • [19] C. Moore, “Rotation surfaces of constant curvature in space of four dimensions,” Bull. Amer. Math. Soc., vol. 26, pp. 454–460, 1920.
  • [20]M. Moruz, M.I. Munteanu, “Minimal translation hypersurfaces in E4,” J. Math. Anal. Appl., vol. 439, pp. 798–812, 2016.
  • [21] C. Scharlach, “Affine geometry of surfaces and hypersurfaces in R4,” In Symposium on the Differential Geometry of Submanifolds; Dillen, F., Simon, U., Vrancken, L., Eds.; Un. Valenciennes: Valenciennes, France, 2007; V. 124, pp. 251–256.
  • [22] B. Senoussi, M. Bekkar, “Helicoidal surfaces with in 3-dimensional Euclidean space,” Stud. Univ. Babeş-Bolyai Math., vol. 60, no. 3, pp. 437–448, 2015.
  • [23] T. Takahashi, “Minimal immersions of Riemannian manifolds,” J. Math. Soc. Japan, vol. 18, pp. 380–385, 1966.
  • [24] L. Verstraelen, J. Walrave, Ş. Yaprak, “The minimal translation surfaces in Euclidean space,“ Soochow J. Math., vol. 20, no. 1, pp. 77–82, 1994.
  • [25] TH. Vlachos, “Hypersurfaces in E4 with harmonic mean curvature vector field,” Math. Nachr., vol. 172, pp. 145–169, 1995.

Rotational Hypersurfaces Satisfying ∆^I R=AR in the Four-Dimensional Euclidean Space

Year 2021, , 517 - 520, 01.06.2021
https://doi.org/10.2339/politeknik.670333

Abstract

In this study, rotational hypersurfaces in the 4-dimensional Euclidean space are discussed. Some relations of curvatures of hypersurfaces are given, such as the mean, Gaussian, and their minimality and flatness. In addition, Laplace-Beltrami operator has been defined for 4-dimensional hypersurfaces depending on the first fundamental form. Moreover, it is shown that each element of the 4×4 order matrix A, which satisfies the condition ∆^I R=AR, is zero, that is, the rotational hypersurface R is minimal.

References

  • [1] K. Arslan, B. Kılıç Bayram, B. Bulca, G. Öztürk, “Generalized Rotation Surfaces in E4,” Result Math. vol. 61, pp. 315–327, 2012.
  • [2] Arvanitoyeorgos, G. Kaimakamis, M. Magid “Lorentz hypersurfaces in E4,1 satisfying ,” Illinois J. Math. vol. 53, no. 2, pp. 581–590, 2009.
  • [3] E. Bour, “Théorie de la déformation des surfaces,” J. Êcole Imperiale Polytech., vol. 22, no. 39, pp. 1–148, 1862.
  • [4] B.Y. Chen, “Total mean curvature and submanifolds of finite type,” World Scientific, Singapore, 1984.
  • [5] B.Y. Chen, M. Choi, Y.H. Kim, “Surfaces of revolution with pointwise 1-type Gauss map,” Korean Math. Soc., vol. 42, pp. 447–455, 2005.
  • [6] Q.M. Cheng, Q.R. Wan, “Complete hypersurfaces of R4 with constant mean curvature,” Monatsh. Math. vol. 118, no. 3, pp. 171–204, 1994.
  • [7] M. Choi, Y.H. Kim, “Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map,” Bull. Korean Math. Soc. vol. 38, pp. 753–761, 2001.
  • [8] F. Dillen, J. Pas, L. Verstraelen, “On surfaces of finite type in Euclidean 3-space,” Kodai Math. J. vol. 13, pp. 10–21, 1990.
  • [9] M. Do Carmo, M. Dajczer, “Helicoidal surfaces with constant mean curvature,” Tohoku Math. J. vol. 34, pp. 351–367, 1982.
  • [10] U. Dursun, N.C. Turgay, “Minimal and Pseudo-Umbilical Rotational Surfaces in Euclidean Space E4,” Mediter. J. Math. vol. 10, pp. 497–506, 2013.
  • [11] A. Ferrandez, O.J. Garay, P. Lucas, “On a certain class of conformally at Euclidean hypersurfaces,” In Global Analysis and Global Differential Geometry; Springer: Berlin, Germany, pp. 48–54. 1990.
  • [12] G. Ganchev, V. Milousheva, “General rotational surfaces in the 4-dimensional Minkowski space,” Turkish J. Math. vol. 38 pp. 883–895, 2014.
  • [13] E. Güler, “Bour's theorem and lightlike profile curve,” Yokohama Math. J., vol. 54, no. 1, pp. 55–77, 2007.
  • [14] E. Güler, M. Magid, Y. Yaylı, “Laplace Beltrami operator of a helicoidal hypersurface in four space,” J. Geom. Symmetry Phys. vol. 41, pp. 77–95, 2016.
  • [15] E. Güler, H.H. Hacısalihoğlu, Y.H. Kim The Gauss map and the third Laplace-Beltrami operator of the rotational hypersurface in 4-Space. Symmetry, 10(9), 398, 2018.
  • [16] H.B. Lawson, “Lectures on Minimal Submanifolds,” 2nd ed.; Mathematics Lecture Series 9; Publish or Perish, Inc.: Wilmington, Delaware, 1980.
  • [17] M. Magid, C. Scharlach, L. Vrancken, “Affine umbilical surfaces in R4,” Manuscripta Math. vol. 88, pp. 275–289, 1995.
  • [18] C. Moore, “Surfaces of rotation in a space of four dimensions,” Ann. Math., vol. 21, pp. 81–93, 1919.
  • [19] C. Moore, “Rotation surfaces of constant curvature in space of four dimensions,” Bull. Amer. Math. Soc., vol. 26, pp. 454–460, 1920.
  • [20]M. Moruz, M.I. Munteanu, “Minimal translation hypersurfaces in E4,” J. Math. Anal. Appl., vol. 439, pp. 798–812, 2016.
  • [21] C. Scharlach, “Affine geometry of surfaces and hypersurfaces in R4,” In Symposium on the Differential Geometry of Submanifolds; Dillen, F., Simon, U., Vrancken, L., Eds.; Un. Valenciennes: Valenciennes, France, 2007; V. 124, pp. 251–256.
  • [22] B. Senoussi, M. Bekkar, “Helicoidal surfaces with in 3-dimensional Euclidean space,” Stud. Univ. Babeş-Bolyai Math., vol. 60, no. 3, pp. 437–448, 2015.
  • [23] T. Takahashi, “Minimal immersions of Riemannian manifolds,” J. Math. Soc. Japan, vol. 18, pp. 380–385, 1966.
  • [24] L. Verstraelen, J. Walrave, Ş. Yaprak, “The minimal translation surfaces in Euclidean space,“ Soochow J. Math., vol. 20, no. 1, pp. 77–82, 1994.
  • [25] TH. Vlachos, “Hypersurfaces in E4 with harmonic mean curvature vector field,” Math. Nachr., vol. 172, pp. 145–169, 1995.
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Erhan Güler 0000-0003-3264-6239

Publication Date June 1, 2021
Submission Date January 4, 2020
Published in Issue Year 2021

Cite

APA Güler, E. (2021). Rotational Hypersurfaces Satisfying ∆^I R=AR in the Four-Dimensional Euclidean Space. Politeknik Dergisi, 24(2), 517-520. https://doi.org/10.2339/politeknik.670333
AMA Güler E. Rotational Hypersurfaces Satisfying ∆^I R=AR in the Four-Dimensional Euclidean Space. Politeknik Dergisi. June 2021;24(2):517-520. doi:10.2339/politeknik.670333
Chicago Güler, Erhan. “Rotational Hypersurfaces Satisfying ∆^I R=AR in the Four-Dimensional Euclidean Space”. Politeknik Dergisi 24, no. 2 (June 2021): 517-20. https://doi.org/10.2339/politeknik.670333.
EndNote Güler E (June 1, 2021) Rotational Hypersurfaces Satisfying ∆^I R=AR in the Four-Dimensional Euclidean Space. Politeknik Dergisi 24 2 517–520.
IEEE E. Güler, “Rotational Hypersurfaces Satisfying ∆^I R=AR in the Four-Dimensional Euclidean Space”, Politeknik Dergisi, vol. 24, no. 2, pp. 517–520, 2021, doi: 10.2339/politeknik.670333.
ISNAD Güler, Erhan. “Rotational Hypersurfaces Satisfying ∆^I R=AR in the Four-Dimensional Euclidean Space”. Politeknik Dergisi 24/2 (June 2021), 517-520. https://doi.org/10.2339/politeknik.670333.
JAMA Güler E. Rotational Hypersurfaces Satisfying ∆^I R=AR in the Four-Dimensional Euclidean Space. Politeknik Dergisi. 2021;24:517–520.
MLA Güler, Erhan. “Rotational Hypersurfaces Satisfying ∆^I R=AR in the Four-Dimensional Euclidean Space”. Politeknik Dergisi, vol. 24, no. 2, 2021, pp. 517-20, doi:10.2339/politeknik.670333.
Vancouver Güler E. Rotational Hypersurfaces Satisfying ∆^I R=AR in the Four-Dimensional Euclidean Space. Politeknik Dergisi. 2021;24(2):517-20.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.