Elyaf Konfigürasyonunun Termoplastik Kompozit Levhaların Mekanik Özelliklerine Etkisi
Year 2021,
, 599 - 607, 01.06.2021
Abdullah Onur Özdemir
,
Çetin Karataş
,
Serdar Yücesu
Abstract
Kompozit malzemeler birden fazla bileşenin bir araya gelmesiyle oluşan malzemelerdir. Termoplastik kompozit malzemeler, işlevsel özellikleri nedeniyle çeşitli endüstriyel uygulamalarda yaygın olarak kullanılmaktadır. Sürekli (dokunmuş veya tek yönlü dokunmamış) elyaf ile reçine tabakalarının kombinasyonu levha halinde kompozit olarak tanımlanmaktadır. Cam elyaf, kompozit levhaların imalatında ümit verici ve rekabet edebilir malzemelerden biridir. Elyaf içeriği kompozit malzemelerin mekanik özelliklerini etkilediğinden dolayı önemlidir. Bu çalışmada, elyaf konfigürasyonu farklı olan termoplastik kompozit levhaların çekme, basma ve darbe özellikleri deneysel olarak incelenmiştir. Malzemelerin mühendislik uygulamalarında etkin kullanımı için maruz kaldıkları yüklere ilişkin bu mekanik özelliklerin bilinmesi esastır. Matriks elemanı polipropilen olan kompozit malzemelerin takviye elemanı dört çeşit konfigürasyona sahip kırpılmış-dokunmuş cam elyaftır. Numuneler, su jetiyle standartlara uygun ölçülerde kesilmiştir. Boyuna ve enine yönlerde hazırlanan numunelerin mekanik testleri oda sıcaklığında gerçekleştirilmiştir. Malzemelerin gerinim-gerilim eğrileri oluşturulmuş, elastik modül değerleri hesaplanmış, çekme, basma ve darbe dayanımları belirlenerek grafikler üzerinde karşılaştırılmıştır. Kompozitlerin mekanik özellikleri dokuma yönüne ve lif oranına bağlı olarak değişkenlik göstermiştir. Dokunmuş elyaf katı ve elyaf oranı en fazla olan kompozit levhanın dayanımı ve birim uzaması en fazla çıkmıştır.
Supporting Institution
Gazi Üniversitesi
Project Number
07/2018-15
Thanks
Bu çalışmayı 07/2018-15 kodlu proje kapsamında destekleyen Gazi Üniversitesi Rektörlüğü Bilimsel Araştırma Projeleri Birimi’ne teşekkür ederiz.
References
- Karakoç H. “Toz metal Al7075/B4C/Si3N4 kompozit malzemelerin üretimi ve aşınma özelliklerinin incelenmesi”, Politeknik Dergisi, (Accepted: 13.11.2019).
- Demir M.E., Çelik Y.H. and Kılıçkap E. “Cam ve karbon elyaf takviyeli kompozitlerde elyaf cinsinin, yükün, kayma hızı ve mesafesinin abrasiv aşınmaya etkisi”, Politeknik Dergisi, 22(4): 811-817, (2019).
- Anand Y. and Dutta V. “Testing of composites: a review”, Advanced Materials Manufacturing & Characterization, 3(1): 359-364, (2013).
- Hemanth R., Sekar M. and Suresha B. “Effects of fibers and fillers on mechanical properties of thermoplastic composites”, Indian Journal of Advances in Chemical Science, 2, 28-35, (2014).
- Wang Y. and Zhao D. “Effect of fabric structures on the mechanical properties of 3-D textile composites”, Journal of Industrial Textiles, 35(3): 239-256, (2006).
- Eksi S. and Genel K. “Comparison of mechanical properties of unidirectional and woven carbon, glass and aramid fiber reinforced epoxy composites”, Acta Physica Polonica A, 132, 879-882, (2017).
- Reyes G. and Sharma U. “Modeling and damage repair of woven thermoplastic composites subjected to low velocity impact”, Composite Structures, 92, 523-531, (2010).
- Suresh S. and Kumar V.S.S. “Experimental determination of the mechanical behavior of glass fiber reinforced polypropylene composites”, Procedia Engineering, 97, 632-641, (2014).
- Mortazavian S. and Fatemi A. “Fatigue behavior and modeling of short fiber reinforced polymer composites: a literature review”, International Journal of Fatigue, 70(1): 297-321, (2015).
- Sridhar D.R. and Varadarajan Y.S. “Significance of the type of reinforcement on the mechanical behavior of thermoplastic composites”, Materials Today: Proceedings, 5, 13139-13145, (2018).
- Demircan O., Al-darkazali A., İnanç İ. and Eskizeybek V. “Investigation of the effect of CNTs on the mechanical properties of LPET/glass fiber thermoplastic composites”, Journal of Thermoplastic Composite Materials, 1-22, (2019).
- Aruchamy K., Subramani, S.P., Palaniappan, S.K., Sethuraman, B. and Kaliyannan, G.V. “Study on mechanical characteristics of woven cotton/bamboo hybrid reinforced composite laminates”, Journal of Materials Research & Technology, 9(1): 718-726, (2020).
- Nassar A. and Nassar E. “Effect of fiber orientation on the mechanical properties of multi layers laminate nanocomposites”, Heliyon, 6, e03167, (2020).
- ISO 527-4. Plastics - Determination of tensile properties, Test conditions for isotropic and orthotropic fibre-reinforced plastic composites, (1997).
- ISO 14126. Fibre-reinforced plastic composites - Determination of compressive properties in the in-plane direction, (1999).
- ISO 179-1. Plastics - Determination of Charpy impact properties, Non-instrumented impact test, (2010).
- Jesuarockiam N., Jawaid M., Zainudin S.E., Sultan M.T.H. and Yahaya R. “Enhanced thermal and dynamic mechanical properties of synthetic/natural hybrid composites with graphene nanoplatelets”, Polymers, 11(7): 1085-1103, (2019).
- Mylsamy B., Palaniappan S.K., Subramani S.P., Pal S.K. and Aruchamy K. “Impact of nanoclay on mechanical and structural properties of treated Coccinia Indica fiber reinforced epoxy composites”, Journal of Materials Research and Technology, 8(6): 6021-6028, (2019).
Effect of Fiber Configuration on Mechanical Properties of Thermoplastic Composite Laminates
Year 2021,
, 599 - 607, 01.06.2021
Abdullah Onur Özdemir
,
Çetin Karataş
,
Serdar Yücesu
Abstract
Composite materials consist of combining two and more ingredients. Thermoplastic composite materials are prevalently used in various industrial applications due to their functional properties. The combination of continuous (woven or unidirectional/non-woven) fiber and resin layers is defined as composite in laminate form. Glass fiber is one of the promising and competitive materials in the manufacture of composite laminates. Fiber content is important because it affects the mechanical properties of composite materials. In this study, the tensile, compressive and impact properties of thermoplastic composite laminates with different fiber configurations were investigated experimentally. So that the effective use of materials in engineering applications, it is essential to know these mechanical properties related to the loads they are exposed to. The reinforcing element of composite materials, whose matrix element is polypropylene, is chopped-woven glass fiber with four configurations. Specimens were cut of sizes conformity to standard via water jet. Mechanical tests of specimens prepared in longitudinal and transverse directions were carried out at room temperature. Stress-strain curves of the materials were created, elastic modulus values were calculated, tensile, compressive and impact strengths were determined and compared on the graphs. The mechanical properties of the composites varied depending on the weaving direction and fiber ratio. The strength and elongation of the composite laminate having higher woven fiber ratio and layer have been greatest.
Project Number
07/2018-15
References
- Karakoç H. “Toz metal Al7075/B4C/Si3N4 kompozit malzemelerin üretimi ve aşınma özelliklerinin incelenmesi”, Politeknik Dergisi, (Accepted: 13.11.2019).
- Demir M.E., Çelik Y.H. and Kılıçkap E. “Cam ve karbon elyaf takviyeli kompozitlerde elyaf cinsinin, yükün, kayma hızı ve mesafesinin abrasiv aşınmaya etkisi”, Politeknik Dergisi, 22(4): 811-817, (2019).
- Anand Y. and Dutta V. “Testing of composites: a review”, Advanced Materials Manufacturing & Characterization, 3(1): 359-364, (2013).
- Hemanth R., Sekar M. and Suresha B. “Effects of fibers and fillers on mechanical properties of thermoplastic composites”, Indian Journal of Advances in Chemical Science, 2, 28-35, (2014).
- Wang Y. and Zhao D. “Effect of fabric structures on the mechanical properties of 3-D textile composites”, Journal of Industrial Textiles, 35(3): 239-256, (2006).
- Eksi S. and Genel K. “Comparison of mechanical properties of unidirectional and woven carbon, glass and aramid fiber reinforced epoxy composites”, Acta Physica Polonica A, 132, 879-882, (2017).
- Reyes G. and Sharma U. “Modeling and damage repair of woven thermoplastic composites subjected to low velocity impact”, Composite Structures, 92, 523-531, (2010).
- Suresh S. and Kumar V.S.S. “Experimental determination of the mechanical behavior of glass fiber reinforced polypropylene composites”, Procedia Engineering, 97, 632-641, (2014).
- Mortazavian S. and Fatemi A. “Fatigue behavior and modeling of short fiber reinforced polymer composites: a literature review”, International Journal of Fatigue, 70(1): 297-321, (2015).
- Sridhar D.R. and Varadarajan Y.S. “Significance of the type of reinforcement on the mechanical behavior of thermoplastic composites”, Materials Today: Proceedings, 5, 13139-13145, (2018).
- Demircan O., Al-darkazali A., İnanç İ. and Eskizeybek V. “Investigation of the effect of CNTs on the mechanical properties of LPET/glass fiber thermoplastic composites”, Journal of Thermoplastic Composite Materials, 1-22, (2019).
- Aruchamy K., Subramani, S.P., Palaniappan, S.K., Sethuraman, B. and Kaliyannan, G.V. “Study on mechanical characteristics of woven cotton/bamboo hybrid reinforced composite laminates”, Journal of Materials Research & Technology, 9(1): 718-726, (2020).
- Nassar A. and Nassar E. “Effect of fiber orientation on the mechanical properties of multi layers laminate nanocomposites”, Heliyon, 6, e03167, (2020).
- ISO 527-4. Plastics - Determination of tensile properties, Test conditions for isotropic and orthotropic fibre-reinforced plastic composites, (1997).
- ISO 14126. Fibre-reinforced plastic composites - Determination of compressive properties in the in-plane direction, (1999).
- ISO 179-1. Plastics - Determination of Charpy impact properties, Non-instrumented impact test, (2010).
- Jesuarockiam N., Jawaid M., Zainudin S.E., Sultan M.T.H. and Yahaya R. “Enhanced thermal and dynamic mechanical properties of synthetic/natural hybrid composites with graphene nanoplatelets”, Polymers, 11(7): 1085-1103, (2019).
- Mylsamy B., Palaniappan S.K., Subramani S.P., Pal S.K. and Aruchamy K. “Impact of nanoclay on mechanical and structural properties of treated Coccinia Indica fiber reinforced epoxy composites”, Journal of Materials Research and Technology, 8(6): 6021-6028, (2019).