Analysis of Stone Column Performance with Hypoplastic Model
Year 2021,
, 997 - 1007, 01.09.2021
Sacit Sarımurat
,
Haci Ercan Tasan
,
Nihat Işık
,
Seyhan Fırat
Abstract
In soft soils, soil liquefaction and related ground changes constitute a large part of the damages occurred due to the earthquakes in past years. One of the methods used to prevent the occurrence of these damages is the stone column method whose importance is increasing every day. Despite the studies, the working behaviour of stone columns under dynamic loading continues to be a complex issue. In this study, the performance of stone columns in loose, saturated sandy soils was investigated with a three dimensional finite element model. In the analysis, both pore water pressure ratios and settlement results were compared for soils with and without stone columns. Also a parametric study is carried out to see how changes in stone column parameters affect stone column performance. A three-dimensional two-phase element (u20p8) implemented to ANSYS program to make the usage of hypoplastic material model possible, in order to obtain pore water pressure accumulations that may occur under dynamic loading in saturated soils. It is seen that the model is well suited for the examination of the behaviour of granular soils under repeated loading. In this study, the advantages of using stone columns in saturated granular soils were discussed. This study is useful for the further studies to see the effect of stone column applications in liquefaction susceptible soils.
References
- [1] Ateş A., “Gölyaka (Düzce) imara esas yerleşim alanındaki zeminlerin SPT ve sismik hız verileriyle sıvılaşma riskinin araştırılması”, Politeknik Dergisi, 20: 753-763, (2017).
- [2] Arman H., Fırat S., Vural I. ve Gündüz Z., “Soil and foundation stability improvement by stone column: A case study in Adapazari city, Turkey”, Scientific Research and Essay – Academic Journals, 4: 972 – 983, (2009).
- [3] Adalier K., Elgamal A., Meneses J. ve Baez I.J., “Stone columns as liquefaction counter-measure in non-plastic silty soils”, Journal of Soil Dynamics and Earthquake Engineering, 23: 571-584, (2003).
- [4] Sarımurat S., Fırat S, Işık N. S. ve Taşan H. E., “Bir santrifüj testinin hipoplastik model kullanılarak sayısal analizi”, 2nd International Turkish World Enginering and Science Congress, Antalya, 3: 79-86, (2019).
- [5] ANSYS INC., “Programmer‘s manual for ANSYS”, Release 18.0., (2016).
- [6] Hleibieh J. ve Herle I., “The performance of a hypoplastic constitutive model in predictions of centrifuge experiments under earthquake conditions”, Soil Dynamics and Earthquake Engineering, 122: 310–317, (2019).
- [7] Meshkinghalam H., Hajialilue-Bonab M. ve Azar A. K., “Numerical ınvestigation of stone columns system for liquefaction and settlement diminution potential”, International Journal of Geo-Engineering, 8: 1-24, (2017).
- [8] Badanagki M., Dashti S., Paramasivam B. ve Tiznado J.C., “How do granular columns affect the seismic performance of non-uniform liquefiable sites and their overlying structures?”, Soil Dynamics and Earthquake Engineering, 125:42-60, (2019).
- [9] Karadağ H., Fırat S. ve Işık N., “Çelikhane cürufunun yol temel ve alttemel malzemesi olarak kullanılması”, Politeknik Dergisi, 23: 799-812, (2020).
- [10] Shen Y. ve Giurgiutiu V., “Effective non-reflective boundary for Lamb waves: theory, finite element implementation, and applications”, Wave Motion, 58: 22-41, (2015).
- [11] Jingbo L., Yixin D., Xiuli D., Zhengyu W. ve Jun W., “3D viscous-spring artificial boundary in time domain”, Earthquake Engineering and Engineering Vibration, 5: 93–102, (2006).
- [12] Lysmer J. ve Kuhlemeyer R., “Finite dynamic model for infinite media", J. Eng. Mech. Div. Proc. Am. Soc. Civ. Eng., 4: 859–877, (1969).
- [13] Tasan H.E., “Zur dimensionierung der monopile-gründungen von offshore-windenergieanlagen”, Doktora Tezi, Faculty VI: Planning-Building- Environment, Technical University of Berlin, (2011).
- [14] Biot M.A., “General theory of three-dimensional consolidation”, Journal of Applied Physics, 12: 155–164, (1941).
- [15] Zienkiewicz O.C., “Constitutive laws and numerical analysis for soil foundations under static, transient or cyclic loads”, Appl. Ocean Res., 2: 23-31, (1980).
- [16] Kolymbas D., “A generalized hypoplastic constitutive law”, Proceedings of the 11th International Conference On Soil Mechanics And Foundation Engineering, San Francisco, 5: 2626, (1993).
- [17] Bauer E., “Calibration of a comprehensive hypoplastic model for granular materials”, Soils and Foundations, 36: 13-26, (1996).
- [18] Herle I., “Hypoplastizität und granulometrie einfacher korngerüste”, Doktora Tezi, Veröffentlichung des Institutes für Bodenmechanik und Felsmechanik der Universität Fridericana in Karlsruhe, (1997).
- [19] Gudehus G., “A comprehensive constitutive equation for granular materials”, Soils and Foundations, 36: 1-12, (1996).
- [20] Wolffersdorff, P-A. von, “A hypoplastic relation for granular materials with a predefined limit state surface”, Mechanics of Cohesive-Frictional Materials, 1: 251-271. (1996).
- [21] Kolymbas D., Herle I. ve Wolffersdorf P. von, “Hypoplastic constitutive equation with internal variables”, Int. J. for Numer. and Anal. Methods in Geomechanics, 19: 415-436, (1995).
- [22] Niemenus A. ve Herle I., “Hypoplastic model for cohesionless soils with elastic strain range”, Mechanics of Cohesive-frictional Materials, 2: 279-299, (1997).
- [23] Taşan H.E., Rackwitz F. ve Savidis S., “Behaviour of cyclic laterally loaded large diameter monopiles in saturated sand”, 7th European Conference on Numerical Methods in Geotechnical Engineering, NUMGE, Trondheim, 7: 889-894, (2010).
- [24] Di Y. ve Sato T., “Liquefaction analysis of saturated soils taking into account variation in porosity and permeability with large deformation”, Computers and Geotechnics, 30: 623-635. (2003).
- [25] Carrier W.D., “Goodbye, Hazen; hello, Kozeny‐Carman", J. Geotech. Geoenviron. Eng., 129: 1054– 1056, (2003).
- [26] Mahrabadi J.A. ve Popescu R., “Solutions for mitigating soil liquefaction effects: a numerical study”, 13th World Conf. on Earthq. Engr., on CD-ROM, (2004)
- [27] Holler,S., “Dynamisches mehrphasenmodell mit hypoplastischer materialformulierung der feststoffphase”, Promotionsschrift, Veröffentlichungen des Lehrstuhls für Baustatik und Baudynamik der RWTH Aachen, 06: 2, (2006).
- [28] Fırat S., Işık N.S., Arman H., Demir M. ve Vural I., “Investigation of the soil amplification factor in the Adapazarı region”, Bulletin of Engineering Geology and the Environment, 75: 141–152, (2016).
- [29] Fırat S., Arman H. ve Kutanis M., “Assessment of liquefaction susceptibility of Adapazari City after 17th August, 1999 Marmara earthquake”, Scientific Research and Essay, 4: 1012-1023, (2009).
Taş Kolon Performanslarının Hipoplastik Model ile Analizi
Year 2021,
, 997 - 1007, 01.09.2021
Sacit Sarımurat
,
Haci Ercan Tasan
,
Nihat Işık
,
Seyhan Fırat
Abstract
Gevşek zeminlerde sıvılaşma ve sıvılaşma kaynaklı zemin hareketleri günümüze kadar meydana gelen depremlerde gerçekleşen hasarların büyük bir bölümünü oluşturmaktadır. Bu hasarların oluşmasının önüne geçmek amacıyla kullanılan yöntemlerden biri, önemi gün geçtikçe daha çok artan, taş kolon yöntemidir. Yapılan çalışmalara rağmen dinamik yüklemeler altında taş kolonların çalışma davranışı karmaşık bir konu olmaya devam etmektedir. Bu çalışmada gevşek, suya doygun kumlu zeminlerde taş kolonların performansı üç boyutlu sonlu elemanlar modeliyle incelenmiştir. Analizlerde taş kolonlu ve taş kolonsuz zeminlerdeki boşluk suyu basıncı oranları ve oturmalar karşılaştırılmıştır. Aynı zamanda taş kolon parametrelerindeki değişikliklerin taş kolon performansını nasıl etkilediğinin görülebilmesi için parametrik çalışmalar yapılmıştır. Analizlerde, dinamik yüklemeler altında boşluk suyu basıncı oluşumlarını görebilmek için hipoplastik malzeme modeli kullanılmıştır. Ancak ANSYS sonlu elemanlar programında tanımlı olmayan bu modelin kullanımına olanak sağlanması için programa üç boyutlu iki fazlı bir eleman (u20p8) tanımlanmıştır. Modelin tekrarlı yükleme altında granüler zeminlerin davranışının incelenmesi için uygun olduğu görülmüştür. Çalışma sonunda taş kolonların suya doygun granüler zeminlerde kullanımının faydaları ortaya konulmuştur. Bu çalışma ileriki araştırmaların amacına uygun olarak kumlu zeminlerde sıvılaşmaya karşı taş kolon kullanımının etkisinin görülmesi açısından faydalı olmuştur.
References
- [1] Ateş A., “Gölyaka (Düzce) imara esas yerleşim alanındaki zeminlerin SPT ve sismik hız verileriyle sıvılaşma riskinin araştırılması”, Politeknik Dergisi, 20: 753-763, (2017).
- [2] Arman H., Fırat S., Vural I. ve Gündüz Z., “Soil and foundation stability improvement by stone column: A case study in Adapazari city, Turkey”, Scientific Research and Essay – Academic Journals, 4: 972 – 983, (2009).
- [3] Adalier K., Elgamal A., Meneses J. ve Baez I.J., “Stone columns as liquefaction counter-measure in non-plastic silty soils”, Journal of Soil Dynamics and Earthquake Engineering, 23: 571-584, (2003).
- [4] Sarımurat S., Fırat S, Işık N. S. ve Taşan H. E., “Bir santrifüj testinin hipoplastik model kullanılarak sayısal analizi”, 2nd International Turkish World Enginering and Science Congress, Antalya, 3: 79-86, (2019).
- [5] ANSYS INC., “Programmer‘s manual for ANSYS”, Release 18.0., (2016).
- [6] Hleibieh J. ve Herle I., “The performance of a hypoplastic constitutive model in predictions of centrifuge experiments under earthquake conditions”, Soil Dynamics and Earthquake Engineering, 122: 310–317, (2019).
- [7] Meshkinghalam H., Hajialilue-Bonab M. ve Azar A. K., “Numerical ınvestigation of stone columns system for liquefaction and settlement diminution potential”, International Journal of Geo-Engineering, 8: 1-24, (2017).
- [8] Badanagki M., Dashti S., Paramasivam B. ve Tiznado J.C., “How do granular columns affect the seismic performance of non-uniform liquefiable sites and their overlying structures?”, Soil Dynamics and Earthquake Engineering, 125:42-60, (2019).
- [9] Karadağ H., Fırat S. ve Işık N., “Çelikhane cürufunun yol temel ve alttemel malzemesi olarak kullanılması”, Politeknik Dergisi, 23: 799-812, (2020).
- [10] Shen Y. ve Giurgiutiu V., “Effective non-reflective boundary for Lamb waves: theory, finite element implementation, and applications”, Wave Motion, 58: 22-41, (2015).
- [11] Jingbo L., Yixin D., Xiuli D., Zhengyu W. ve Jun W., “3D viscous-spring artificial boundary in time domain”, Earthquake Engineering and Engineering Vibration, 5: 93–102, (2006).
- [12] Lysmer J. ve Kuhlemeyer R., “Finite dynamic model for infinite media", J. Eng. Mech. Div. Proc. Am. Soc. Civ. Eng., 4: 859–877, (1969).
- [13] Tasan H.E., “Zur dimensionierung der monopile-gründungen von offshore-windenergieanlagen”, Doktora Tezi, Faculty VI: Planning-Building- Environment, Technical University of Berlin, (2011).
- [14] Biot M.A., “General theory of three-dimensional consolidation”, Journal of Applied Physics, 12: 155–164, (1941).
- [15] Zienkiewicz O.C., “Constitutive laws and numerical analysis for soil foundations under static, transient or cyclic loads”, Appl. Ocean Res., 2: 23-31, (1980).
- [16] Kolymbas D., “A generalized hypoplastic constitutive law”, Proceedings of the 11th International Conference On Soil Mechanics And Foundation Engineering, San Francisco, 5: 2626, (1993).
- [17] Bauer E., “Calibration of a comprehensive hypoplastic model for granular materials”, Soils and Foundations, 36: 13-26, (1996).
- [18] Herle I., “Hypoplastizität und granulometrie einfacher korngerüste”, Doktora Tezi, Veröffentlichung des Institutes für Bodenmechanik und Felsmechanik der Universität Fridericana in Karlsruhe, (1997).
- [19] Gudehus G., “A comprehensive constitutive equation for granular materials”, Soils and Foundations, 36: 1-12, (1996).
- [20] Wolffersdorff, P-A. von, “A hypoplastic relation for granular materials with a predefined limit state surface”, Mechanics of Cohesive-Frictional Materials, 1: 251-271. (1996).
- [21] Kolymbas D., Herle I. ve Wolffersdorf P. von, “Hypoplastic constitutive equation with internal variables”, Int. J. for Numer. and Anal. Methods in Geomechanics, 19: 415-436, (1995).
- [22] Niemenus A. ve Herle I., “Hypoplastic model for cohesionless soils with elastic strain range”, Mechanics of Cohesive-frictional Materials, 2: 279-299, (1997).
- [23] Taşan H.E., Rackwitz F. ve Savidis S., “Behaviour of cyclic laterally loaded large diameter monopiles in saturated sand”, 7th European Conference on Numerical Methods in Geotechnical Engineering, NUMGE, Trondheim, 7: 889-894, (2010).
- [24] Di Y. ve Sato T., “Liquefaction analysis of saturated soils taking into account variation in porosity and permeability with large deformation”, Computers and Geotechnics, 30: 623-635. (2003).
- [25] Carrier W.D., “Goodbye, Hazen; hello, Kozeny‐Carman", J. Geotech. Geoenviron. Eng., 129: 1054– 1056, (2003).
- [26] Mahrabadi J.A. ve Popescu R., “Solutions for mitigating soil liquefaction effects: a numerical study”, 13th World Conf. on Earthq. Engr., on CD-ROM, (2004)
- [27] Holler,S., “Dynamisches mehrphasenmodell mit hypoplastischer materialformulierung der feststoffphase”, Promotionsschrift, Veröffentlichungen des Lehrstuhls für Baustatik und Baudynamik der RWTH Aachen, 06: 2, (2006).
- [28] Fırat S., Işık N.S., Arman H., Demir M. ve Vural I., “Investigation of the soil amplification factor in the Adapazarı region”, Bulletin of Engineering Geology and the Environment, 75: 141–152, (2016).
- [29] Fırat S., Arman H. ve Kutanis M., “Assessment of liquefaction susceptibility of Adapazari City after 17th August, 1999 Marmara earthquake”, Scientific Research and Essay, 4: 1012-1023, (2009).