Research Article
BibTex RIS Cite

Takım Dönme Hızı ve Karıştırıcı Uç Geometrisinin Pirincin Sürtünme Karıştırma Kaynağında Özelliklere olan Etkileri

Year 2021, , 339 - 346, 01.03.2021
https://doi.org/10.2339/politeknik.783296

Abstract

Bu çalışmada, CuZn37 pirinç levhalar, takım ilerleme hızı 40 mm/dakika olarak sabit iken 500, 800 ve 1100 devir/dakika takım dönme hızlarında, üç farklı karıştırıcı uç ile diğer parametreler sabitken sürtünme karıştırma kaynağı ile birleştirilmiştir. Uygulanan kaynak parametrelerinin kaynak bölgesine ve mekanik özelliklere olan etkileri çekme testi, mikrosertlik ölçümleri, optik ve taramalı elektron mikroskobu yardımıyla araştırılmıştır. Ayrıca karışım bölgesindeki sıcaklık değişimi K-tipi termokupl kullanarak ölçülmüştür. Çekme testi sonuçları, 800 devir/dakika takım dönme hızında ve sadece konik bir kesite sahip uç ile ana metale göre %81 kaynak performansında, hatasız bir birleştirme yapılabildiğini göstermiştir. Bu birleştirmenin karışım bölgesi ana metale göre bir miktar yumuşamış olup, en düşük sertlikler ısı tesiri altındaki bölgelerde ölçülmüştür. Karışım bölgesinin maksimum sıcaklığı, takım dönme hızının artmasıyla yükselmiş, 1100 devir/dakika’da ise 804 C’ye ulaşmıştır.

References

  • [1] Bringas J.E. and Wayman M.L., “Nonferrous Metals”, Fourth edition on CD-ROM, Casti Publishing Inc., Alberta, (2003).
  • [2] Lee W.B. and Jung S.B., “The Joint Properties of Copper by Friction Stir Welding”, Materials Letters, 58(6):1041-1046. (2004).
  • [3] Xue P., Xie G.M., Xiao B.L., Ma Z.Y. and Geng L., “Effect of Heat Input Conditions on Microstructure and Mechanical Properties of Friction-Stir-Welded Pure Copper”, Metallurgical and Materials Transactions A, 41A:2010-2021, (2010).
  • [4] Cam G., Serindag H.T., Cakan A., Mistikoglu S. and Yavuz H., “The Effect of Weld Parameters on Friction Stir Welding of Brass Plates”, Materialwissenschaft und Werkstofftechnik, 39(6):394-399, (2008).
  • [5] Baker H. (Ed.), “ASM Handbook, Welding, Brazing, and Soldering”, vol. 6, ASM International, USA, (1997).
  • [6] Thomas W.M., Nicholas E.D., Needham J.C., Murch M.G., Templesmith P. and Dawes C.J., International Patent Application No. PCT/GB92/02203 “Friction Stir Butt Welding”, (1991) and GB Patent Application No. 9125978.8, U.S. Patent No. 5,460,317 (1995).
  • [7] Verma S. and Misra J.P., “Critical Review of Friction Stir Welding Process”. Chapter 22 in DAAAM International Scientific Book, 249-266, (2015).
  • [8] Ozer A., Sik A., Cevik B. and Ozer M., “The effect of friction stir welding parameters on microstructure and fatigue strength of CuZn37 brass alloys”, Kovove materialy - Metallic Materials, 55(2):107-114, (2017).
  • [9] Dawes C. and Thomas W., “Friction Stir Joining of Aluminium Alloys”, Bulletin 6, TWI, 124-127, (1995).
  • [10] Kumar K., Kailas S.V. and Srivatsan T.S., “Influence of Tool Geometry in Friction Stir Welding”, Materials and Manufacturing Process, 23(2):188-194, (2008).
  • [11] Barlas Z. and Ozsarac U., “Effects of FSW Parameters on Joint Properties of AlMg3 Alloy”, Welding Journal, 91:16s-22s, (2012).
  • [12] Padmanaban G. and Balasubramanian V., “Selection of FSW Tool Pin Profile, Shoulder Diameter and Material for Joining AZ31B Magnesium Alloy-An Experimental Approach”, Materials and Design, 30(7):2647-2656, (2009).
  • [13] Rose A.R., Manisekar K. and Balasubramanian V., “Effect of axial force on microstructure and tensile properties of friction stir welded AZ61A magnesium alloy”, Transactions of Nonferrous Metals Society of China, 21(5):974-984. (2011).
  • [14] Seighalani K.R., Besharati Givi M.K., Nasiri A.M. and Bahemmat P.J., “Investigations on the Effects of the Tool Material, Geometry, and Tilt Angle on Friction Stir Welding of Pure Titanium”, Journal of Materials Engineering and Performance, 19:955-962, (2010).
  • [15] Meran C., Kovan V. and Alptekin, A., “Friction stir welding of AISI 304 austenitic stainless steel”, Materialwissenschaft und Werkstofftechnik, 38(10):829-835, (2007).
  • [16] Uzun H., “Friction stir welding of SiC particulate reinforced AA2124 aluminium alloy matrix composite”, Materials and Design, 28(5):1440-1446, (2006).
  • [17] Bozkurt Y., “The optimization of friction stir welding process parameters to achieve maximum tensile strength in polyethylene sheets”, Materials and Design, 35:440-445, (2012).
  • [18] Sun Y.F. and Fujii H., “Investigation of the welding parameter dependent microstructure and mechanical properties of friction stir welded pure copper”, Materials Science and Engineering: A, 527(26):6879-6886, (2010).
  • [19] Srirangarajalu N., Reddy G.M., Rao S.K. and Rajadurai, A. “Microstructure and mechanical behaviour of friction stir welded copper”, In: Trends in Intelligent Robotics, Automation, and Manufacturing: First International Conference, IRAM, Malaysia, 458-465, (2012).
  • [20] Heidarzadeh A., Jabbari M. and Esmaily M., “Prediction of grain size and mechanical properties in friction stir welded pure copper joints using a thermal model”, International Journal of Advanced Manufacturing Technology, 77(9-12):1819-1829, (2015).
  • [21] Azizi A., Barenji R.V., Barenji A.V. and Hashemipour M., “Microstructure and mechanical properties of friction stir welded thick pure copper plates”, International Journal of Advanced Manufacturing Technology, 86(5-8):1985-1995, (2016).
  • [22] Nia A.A. and Shirazi A., “Effects of different friction stir welding conditions on the microstructure and mechanical properties of copper plates”, International Journal of Minerals, Metallurgy and Materials, 23(7):799-809, (2016).
  • [23] Barenji R.V., “Influence of heat input conditions on microstructure evolution and mechanical properties of friction stir welded pure copper joints”, Transactions of the Indian Institute of Metals, 69(5):1077-108, (2016).
  • [24] Kumar A. and Suvarna Raju L., “Influence of Tool Pin Profiles on Friction Stir Welding of Copper”, Materials and Manufacturing Processes, 27(1):1414-1418, (2012).
  • [25] Cartigueyen S. and Mahadevan K., “Study of friction stir processed zone under different tool pin profiles in pure copper”, IOSR Journal of Mechanical and Civil Engineering, 11(2):06-12, (2014).
  • [26] Uzun H., Donne C.D., Argagnotto A. and Ghidini T., “Gambaro C. Friction stir welding of dissimilar Al 6013-T4 to X5CrNi18-10 stainless steel”, Materials and Design, 26(1):41-46, (2005).
  • [27] Yan J., Xu Z., Li Z., Li L. and Yang S., “Microstructure characteristics and performance of dissimilar welds between magnesium alloy and aluminum formed by friction stirring”, Scripta Materialia, 53(5):585-589, (2005).
  • [28] Barlas Z. and Uzun H., “Sürtünme Karıştırma Kaynağı Yapılmış Cu/Al-1050 Alın Birleştirmesinin Mikroyapı ve Mekanik Özelliklerinin İncelenmesi”, Journal Of The Faculty Of Engineering And Architecture Of Gazi University, 25(4):857-865, (2010).
  • [29] Barlas Z. and Uzun H., “Microstructure and Mechanical Properties of Friction Stir Butt Welded Dissimilar Pure Copper/Brass Alloy Plates”, International Journal of Materials Research, 101(6):801-807, (2010).
  • [30] Dinaharan I., Thirunavukkarasu R., Murugan N. and Akinlabi E.T., “Microstructure Evolution and Tensile Behavior of Dissimilar Friction Stir‑Welded Pure Copper and Dual‑Phase Brass”, Metallography, Microstructure, and Analysis, 8:735-748, (2019).
  • [31] Mishra R.S. and Ma Z.Y., “Friction Stir Welding and Processing”, Materials Science and Engineering: R: Reports, 50(1-2):1-78, (2005).
  • [32] Nandan R., Debroy T. and Bhadeshia H.K.D.H., “Recent Advances in Friction-Stir Welding - Process, Weldment Structure and Properties”, Progress in Materials Science, 53(6):980-1023, (2008).
  • [33] Boz M. and Kurt A., “The Influence of Stirrer Geometry on Bonding and Mechanical Properties in Friction stir Welding Process”, Materials and Design, 25(4):343-347, (2004).
  • [34] Anand R. and Sridhar V.G., “Studies on process parameters and tool geometry selecting aspects of friction stir welding - A review”, Materials Today: Proceedings, 27(1):576-583, (2020).
  • [35] Gadakh V.S., Kumar A. and Patil J.V., “Analytical Modeling of the Friction Stir Welding Process using Different Pin Profiles”, Welding Journal, 94(4):115-124, (2015).
  • [36] Palanivel R., Mathews P.K., Murugan N. and Dinaharan I., “Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys”, Materials and Design, 40:7-16, (2012).
  • [37] Emami S. and Saeid T., “Effects of welding and rotational speeds on the microstructure and hardness of friction stir welded single-phase brass”, Acta Metallurgica Sinica (English Letters), 28(6):766-771, (2015).
  • [38] Xie G.M., Ma Z.Y. and Geng L., “Effects of Friction Stir Welding Parameters on Microstructures and Mechanical Properties of Brass Joints”, Materials Transactions, 49(7):1698-1701, (2008).
  • [39] Cam G., Mistikoglu S. and Pakdil M., “Microstructural and Mechanical Characterization of Friction Stir Butt Joint Welded 63%Cu-37%Zn Brass Plate”, Welding Journal, 88(11):225-232, (2009).
  • [40] Moghaddam M.S., Parvizi R., Haddad-Sabzevar M. and Davoodi A., “Microstructural and mechanical properties of friction stir welded Cu–30Zn brass alloy at various feed speeds: influence of stir bands”, Materials and Design, 32(5):2749-2755, (2011).
  • [41] Meran C., “The joint properties of brass plates by friction stir welding”, Materials and Design, 27(9):719-726, (2006).
  • [42] Park H.S., Kimura T., Murakamic T., Nagano Y., Nakata K. and Ushio M., “Microstructures and mechanical properties of friction stir welds of 60% Cu–40% Zn copper alloy”, Materials Science and Engineering: A, 371(1-2):160-169, (2004).
  • [43] Emamikhah A., Abbasi A., Atefat A. and Besharati Givi M.K., “Effect of tool pin profile on friction stir butt welding of high-zinc brass (CuZn40)”, International Journal of Advanced Manufacturing Technology, 71:81-90, (2014).
  • [44] Gecmen I., Catalgol Z. and Bilici M.K., “Effect of welding parameters on mechanical properties and microstructure of friction stir welded brass joints”, Matériaux & Techniques, 106(6):1-12, (2018).
  • [45] Waheed M.A., Jaiyesimi L.O., Ismail S.O. and Dairo O.U.J., “Analytical Investigations of the Effects of Tool Pin Profile and Process Parameters on the Peak Temperature in Friction Stir Welding”, Journal of Applied and Computational Mechanics, 3(2);114-124, (2017).

Effects of Tool Rotation Speed and Pin Geometry on Properties in Friction Stir Welding of Brass

Year 2021, , 339 - 346, 01.03.2021
https://doi.org/10.2339/politeknik.783296

Abstract

In this study, CuZn37 brass sheets were joined by applying three different stirrer pins and different tool rotation speeds of 500, 800, and 1100 rpm by friction stir welding, while tool travel speed (40 mmmin-1), and other parameters were kept constant. Effects of the used weld parameters were investigated in weld zone and mechanical features via tensile test, microhardness measurement and optical and scanning electron microscopies. The rising of temperature in stir zone was also measured by using K-type thermocouple. The tensile test results show that a defect-free joint having weld performance of 81% of the base brass metal was achieved by using a conical pin without flattened at tool rotation speed of 800 rpm. The stir zone of this joint slightly softened according to the base metal and the heat-affected zones showed the lowest hardness values. The peak temperature in the stir zones was increased with increasing of tool rotation speed, consequently arrived to 804 C at 1100 rpm.  

References

  • [1] Bringas J.E. and Wayman M.L., “Nonferrous Metals”, Fourth edition on CD-ROM, Casti Publishing Inc., Alberta, (2003).
  • [2] Lee W.B. and Jung S.B., “The Joint Properties of Copper by Friction Stir Welding”, Materials Letters, 58(6):1041-1046. (2004).
  • [3] Xue P., Xie G.M., Xiao B.L., Ma Z.Y. and Geng L., “Effect of Heat Input Conditions on Microstructure and Mechanical Properties of Friction-Stir-Welded Pure Copper”, Metallurgical and Materials Transactions A, 41A:2010-2021, (2010).
  • [4] Cam G., Serindag H.T., Cakan A., Mistikoglu S. and Yavuz H., “The Effect of Weld Parameters on Friction Stir Welding of Brass Plates”, Materialwissenschaft und Werkstofftechnik, 39(6):394-399, (2008).
  • [5] Baker H. (Ed.), “ASM Handbook, Welding, Brazing, and Soldering”, vol. 6, ASM International, USA, (1997).
  • [6] Thomas W.M., Nicholas E.D., Needham J.C., Murch M.G., Templesmith P. and Dawes C.J., International Patent Application No. PCT/GB92/02203 “Friction Stir Butt Welding”, (1991) and GB Patent Application No. 9125978.8, U.S. Patent No. 5,460,317 (1995).
  • [7] Verma S. and Misra J.P., “Critical Review of Friction Stir Welding Process”. Chapter 22 in DAAAM International Scientific Book, 249-266, (2015).
  • [8] Ozer A., Sik A., Cevik B. and Ozer M., “The effect of friction stir welding parameters on microstructure and fatigue strength of CuZn37 brass alloys”, Kovove materialy - Metallic Materials, 55(2):107-114, (2017).
  • [9] Dawes C. and Thomas W., “Friction Stir Joining of Aluminium Alloys”, Bulletin 6, TWI, 124-127, (1995).
  • [10] Kumar K., Kailas S.V. and Srivatsan T.S., “Influence of Tool Geometry in Friction Stir Welding”, Materials and Manufacturing Process, 23(2):188-194, (2008).
  • [11] Barlas Z. and Ozsarac U., “Effects of FSW Parameters on Joint Properties of AlMg3 Alloy”, Welding Journal, 91:16s-22s, (2012).
  • [12] Padmanaban G. and Balasubramanian V., “Selection of FSW Tool Pin Profile, Shoulder Diameter and Material for Joining AZ31B Magnesium Alloy-An Experimental Approach”, Materials and Design, 30(7):2647-2656, (2009).
  • [13] Rose A.R., Manisekar K. and Balasubramanian V., “Effect of axial force on microstructure and tensile properties of friction stir welded AZ61A magnesium alloy”, Transactions of Nonferrous Metals Society of China, 21(5):974-984. (2011).
  • [14] Seighalani K.R., Besharati Givi M.K., Nasiri A.M. and Bahemmat P.J., “Investigations on the Effects of the Tool Material, Geometry, and Tilt Angle on Friction Stir Welding of Pure Titanium”, Journal of Materials Engineering and Performance, 19:955-962, (2010).
  • [15] Meran C., Kovan V. and Alptekin, A., “Friction stir welding of AISI 304 austenitic stainless steel”, Materialwissenschaft und Werkstofftechnik, 38(10):829-835, (2007).
  • [16] Uzun H., “Friction stir welding of SiC particulate reinforced AA2124 aluminium alloy matrix composite”, Materials and Design, 28(5):1440-1446, (2006).
  • [17] Bozkurt Y., “The optimization of friction stir welding process parameters to achieve maximum tensile strength in polyethylene sheets”, Materials and Design, 35:440-445, (2012).
  • [18] Sun Y.F. and Fujii H., “Investigation of the welding parameter dependent microstructure and mechanical properties of friction stir welded pure copper”, Materials Science and Engineering: A, 527(26):6879-6886, (2010).
  • [19] Srirangarajalu N., Reddy G.M., Rao S.K. and Rajadurai, A. “Microstructure and mechanical behaviour of friction stir welded copper”, In: Trends in Intelligent Robotics, Automation, and Manufacturing: First International Conference, IRAM, Malaysia, 458-465, (2012).
  • [20] Heidarzadeh A., Jabbari M. and Esmaily M., “Prediction of grain size and mechanical properties in friction stir welded pure copper joints using a thermal model”, International Journal of Advanced Manufacturing Technology, 77(9-12):1819-1829, (2015).
  • [21] Azizi A., Barenji R.V., Barenji A.V. and Hashemipour M., “Microstructure and mechanical properties of friction stir welded thick pure copper plates”, International Journal of Advanced Manufacturing Technology, 86(5-8):1985-1995, (2016).
  • [22] Nia A.A. and Shirazi A., “Effects of different friction stir welding conditions on the microstructure and mechanical properties of copper plates”, International Journal of Minerals, Metallurgy and Materials, 23(7):799-809, (2016).
  • [23] Barenji R.V., “Influence of heat input conditions on microstructure evolution and mechanical properties of friction stir welded pure copper joints”, Transactions of the Indian Institute of Metals, 69(5):1077-108, (2016).
  • [24] Kumar A. and Suvarna Raju L., “Influence of Tool Pin Profiles on Friction Stir Welding of Copper”, Materials and Manufacturing Processes, 27(1):1414-1418, (2012).
  • [25] Cartigueyen S. and Mahadevan K., “Study of friction stir processed zone under different tool pin profiles in pure copper”, IOSR Journal of Mechanical and Civil Engineering, 11(2):06-12, (2014).
  • [26] Uzun H., Donne C.D., Argagnotto A. and Ghidini T., “Gambaro C. Friction stir welding of dissimilar Al 6013-T4 to X5CrNi18-10 stainless steel”, Materials and Design, 26(1):41-46, (2005).
  • [27] Yan J., Xu Z., Li Z., Li L. and Yang S., “Microstructure characteristics and performance of dissimilar welds between magnesium alloy and aluminum formed by friction stirring”, Scripta Materialia, 53(5):585-589, (2005).
  • [28] Barlas Z. and Uzun H., “Sürtünme Karıştırma Kaynağı Yapılmış Cu/Al-1050 Alın Birleştirmesinin Mikroyapı ve Mekanik Özelliklerinin İncelenmesi”, Journal Of The Faculty Of Engineering And Architecture Of Gazi University, 25(4):857-865, (2010).
  • [29] Barlas Z. and Uzun H., “Microstructure and Mechanical Properties of Friction Stir Butt Welded Dissimilar Pure Copper/Brass Alloy Plates”, International Journal of Materials Research, 101(6):801-807, (2010).
  • [30] Dinaharan I., Thirunavukkarasu R., Murugan N. and Akinlabi E.T., “Microstructure Evolution and Tensile Behavior of Dissimilar Friction Stir‑Welded Pure Copper and Dual‑Phase Brass”, Metallography, Microstructure, and Analysis, 8:735-748, (2019).
  • [31] Mishra R.S. and Ma Z.Y., “Friction Stir Welding and Processing”, Materials Science and Engineering: R: Reports, 50(1-2):1-78, (2005).
  • [32] Nandan R., Debroy T. and Bhadeshia H.K.D.H., “Recent Advances in Friction-Stir Welding - Process, Weldment Structure and Properties”, Progress in Materials Science, 53(6):980-1023, (2008).
  • [33] Boz M. and Kurt A., “The Influence of Stirrer Geometry on Bonding and Mechanical Properties in Friction stir Welding Process”, Materials and Design, 25(4):343-347, (2004).
  • [34] Anand R. and Sridhar V.G., “Studies on process parameters and tool geometry selecting aspects of friction stir welding - A review”, Materials Today: Proceedings, 27(1):576-583, (2020).
  • [35] Gadakh V.S., Kumar A. and Patil J.V., “Analytical Modeling of the Friction Stir Welding Process using Different Pin Profiles”, Welding Journal, 94(4):115-124, (2015).
  • [36] Palanivel R., Mathews P.K., Murugan N. and Dinaharan I., “Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys”, Materials and Design, 40:7-16, (2012).
  • [37] Emami S. and Saeid T., “Effects of welding and rotational speeds on the microstructure and hardness of friction stir welded single-phase brass”, Acta Metallurgica Sinica (English Letters), 28(6):766-771, (2015).
  • [38] Xie G.M., Ma Z.Y. and Geng L., “Effects of Friction Stir Welding Parameters on Microstructures and Mechanical Properties of Brass Joints”, Materials Transactions, 49(7):1698-1701, (2008).
  • [39] Cam G., Mistikoglu S. and Pakdil M., “Microstructural and Mechanical Characterization of Friction Stir Butt Joint Welded 63%Cu-37%Zn Brass Plate”, Welding Journal, 88(11):225-232, (2009).
  • [40] Moghaddam M.S., Parvizi R., Haddad-Sabzevar M. and Davoodi A., “Microstructural and mechanical properties of friction stir welded Cu–30Zn brass alloy at various feed speeds: influence of stir bands”, Materials and Design, 32(5):2749-2755, (2011).
  • [41] Meran C., “The joint properties of brass plates by friction stir welding”, Materials and Design, 27(9):719-726, (2006).
  • [42] Park H.S., Kimura T., Murakamic T., Nagano Y., Nakata K. and Ushio M., “Microstructures and mechanical properties of friction stir welds of 60% Cu–40% Zn copper alloy”, Materials Science and Engineering: A, 371(1-2):160-169, (2004).
  • [43] Emamikhah A., Abbasi A., Atefat A. and Besharati Givi M.K., “Effect of tool pin profile on friction stir butt welding of high-zinc brass (CuZn40)”, International Journal of Advanced Manufacturing Technology, 71:81-90, (2014).
  • [44] Gecmen I., Catalgol Z. and Bilici M.K., “Effect of welding parameters on mechanical properties and microstructure of friction stir welded brass joints”, Matériaux & Techniques, 106(6):1-12, (2018).
  • [45] Waheed M.A., Jaiyesimi L.O., Ismail S.O. and Dairo O.U.J., “Analytical Investigations of the Effects of Tool Pin Profile and Process Parameters on the Peak Temperature in Friction Stir Welding”, Journal of Applied and Computational Mechanics, 3(2);114-124, (2017).
There are 45 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Zafer Barlas 0000-0001-9063-6501

Publication Date March 1, 2021
Submission Date August 20, 2020
Published in Issue Year 2021

Cite

APA Barlas, Z. (2021). Effects of Tool Rotation Speed and Pin Geometry on Properties in Friction Stir Welding of Brass. Politeknik Dergisi, 24(1), 339-346. https://doi.org/10.2339/politeknik.783296
AMA Barlas Z. Effects of Tool Rotation Speed and Pin Geometry on Properties in Friction Stir Welding of Brass. Politeknik Dergisi. March 2021;24(1):339-346. doi:10.2339/politeknik.783296
Chicago Barlas, Zafer. “Effects of Tool Rotation Speed and Pin Geometry on Properties in Friction Stir Welding of Brass”. Politeknik Dergisi 24, no. 1 (March 2021): 339-46. https://doi.org/10.2339/politeknik.783296.
EndNote Barlas Z (March 1, 2021) Effects of Tool Rotation Speed and Pin Geometry on Properties in Friction Stir Welding of Brass. Politeknik Dergisi 24 1 339–346.
IEEE Z. Barlas, “Effects of Tool Rotation Speed and Pin Geometry on Properties in Friction Stir Welding of Brass”, Politeknik Dergisi, vol. 24, no. 1, pp. 339–346, 2021, doi: 10.2339/politeknik.783296.
ISNAD Barlas, Zafer. “Effects of Tool Rotation Speed and Pin Geometry on Properties in Friction Stir Welding of Brass”. Politeknik Dergisi 24/1 (March 2021), 339-346. https://doi.org/10.2339/politeknik.783296.
JAMA Barlas Z. Effects of Tool Rotation Speed and Pin Geometry on Properties in Friction Stir Welding of Brass. Politeknik Dergisi. 2021;24:339–346.
MLA Barlas, Zafer. “Effects of Tool Rotation Speed and Pin Geometry on Properties in Friction Stir Welding of Brass”. Politeknik Dergisi, vol. 24, no. 1, 2021, pp. 339-46, doi:10.2339/politeknik.783296.
Vancouver Barlas Z. Effects of Tool Rotation Speed and Pin Geometry on Properties in Friction Stir Welding of Brass. Politeknik Dergisi. 2021;24(1):339-46.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.