Review
BibTex RIS Cite

Adsorpsiyon ile Virüslerin Giderilmesine İlişkin Bir İnceleme

Year 2023, , 257 - 266, 27.03.2023
https://doi.org/10.2339/politeknik.846059

Abstract

2020 yılında Çin’in Hubei eyaletinin Vuhan şehrinden neredeyse tüm ülkelere yayılan Covid-19 (SARS-CoV-2 Enfeksiyonu)’un potansiyel tehlikeleri, dünya çapında bilim insanlarının ilgi odağı olmuştur. Covid-19’un pnömoniden ağır akut solunum yolu enfeksiyonlarına ve böbrek yetmezliğinden ölüme kadar uzanan ciddi etki süreçleri milyonlarca insan için tehdidini sürdürmektedir. Ortaya çıkan yeni viral enfeksiyonlarda uygun tedavi protokollerinin geliştirilmesi için pandemik türlerin izolasyonu büyük önem arz etmektedir. Bunun için yeni yöntemlerin yanında mevcut yöntemlerin de geliştirilmesi gereklidir. Virüsler doğada canlı formda bulunmazlar ve genetik materyalini aktarabilmek için başka canlılara ihtiyaç duyarlar. Ayrıca izole edilmiş yüzeylerde hızla inaktif hale getirilebilirler. Bu yönüyle su kaynakları ve hava en önemli iletim vasıtaları olarak karşımıza çıkmaktadır. Virüslerin yayılmasının önüne geçmede ve onları etkisiz hale getirmede iletim vasıtalarına yönelik adsorpsiyon işlemleri uygulanabilmektedir. Bu derlemede, virüslerin karbonlu, oksitli, gözenekli materyaller ve metal organik kafes yapıları içeren çeşitli adsorbanlarla etkileşimleri incelendi. Su ve hava arıtmasında kullanılan adsorbanların hedef türleri adsorplama işlemlerinde elektrostatik etkileşimlerin daha etkili olduğu belirlendi. Virüs yüzeyinin çeşitli organik fonksiyonel grupları taşıması nedeniyle farklı adsorbanlar ile elektrostatik etkileşime geçeceği ve bu şekilde de onların uzaklaştırılarak hem izole edilmesi hem de etkisiz hale getirilmesi mümkün görülmektedir. Çalışmamızın Koronavirüsler dahil diğer patojenlerin hava ve su kaynaklarına uygulanacak adsorpsiyon işlemleri ile yayılmalarının engellenmesine ve belirtilen iletim vasıtalarının dezenfekte edilmesine yönelik etkili çözümlere katkı sağlayacağını düşünmekteyiz.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • [1] Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Niu, P., “A novel coronavirüs from patients with pneumonia in China”, New England Journal of Medicine, (2020).
  • [2] Sohrabi, C., Alsafi, Z., O’Neill, N., Khan, M., Kerwan, A., Al-Jabir, A., Agha, R. “World Health Organization declares global emergency: A review of the 2019 novel coronavirüs (COVID-19)”, International Journal of Surgery, (2020).
  • [3] Elkholy, A. A., Grant, R., Assiri, A., Elhakim, M., Malik, M. R., Van Kerkhove, M.D., “MERS-CoV infection among healthcare workers and risk factors for death: retrospective analysis of all laboratory-confirmed cases reported to WHO from 2012 to 2 June 2018”, Journal of infection and public health, 13(3): 418-422 (2020).
  • [4] Domingo, J. L., Marquès, M., & Rovira, J., “Influence of airborne transmission of SARS-CoV-2 on COVID-19 pandemic. A review”, Environmental research, 109861. (2020).
  • [5] Guarner, J., “Three emerging coronavirüses in two decades: the story of SARS, MERS, and now COVID-19”, (2020).
  • [6] Zhang, N., Wang, L., Deng, X., Liang, R., Su, M., He, C., Du, L., “Recent advances in the detection of respiratory virüs infection in humans”, Journal of medical virology, 92(4): 408-417 (2020).
  • [7] Chisholm, P. J., Busch, J. W., Crowder, D. W., “Effects of life history and ecology on virüs evolutionary potential”, Virüs research, 265: 1-9 (2019).
  • [8] Zandi, R., Dragnea, B., Travesset, A., Podgornik, R., “On virüs growth and form”, Physics Reports, 847:1-102 (2020).
  • [9] Artika, I.M., Wiyatno, A., Ma’roef, C.N., “Pathogenic virüses: Molecular detection and characterization”, Infection, Genetics and Evolution, 81:104215 (2020).
  • [10] Annalaura, C., Ileana, F., Dasheng, L., Marco, V., “Making waves: Coronavirüs detection, presence and persistence in the water environment: State of the art and knowledge needs for public health”, Water Research, 115907 (2020).
  • [11] Shirasaki, N., Matsushita, T., Matsui, Y., Murai, K., & Aochi, A., “Elimination of representative contaminant candidate list virüses, coxsackievirüs, echovirüs, hepatitis A virüs, and norovirüs, from water by coagulation processes”, Journal of hazardous materials, 326:110-119 (2017).
  • [12] https://www.lokmanhekim.edu.tr/en/haber/bu-pandemi-son-olmayacak-sars-cov-2-ve-marifeti-covid-19/ (erişim tarihi: 28.11.2020)
  • [13] Randazzo, W., Truchado, P., Cuevas-Ferrando, E., Simón, P., Allende, A., & Sánchez, G., “SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area”, Water Research, 115942 (2020).
  • [14] https://www.detam.com.tr/corona-virüs-ve-covid19-kuresel-tehlike/ (erişim tarihi: 28.11.2020)
  • [15] http://drahmetdobrucali.com/hepatit-b/ (erişim tarihi: 28.11.2020)
  • [16] https://www.doktoroge.com/adenovirüs-enfeksiyonlari/ (erişim tarihi: 28.11.2020)
  • [17]https://en.wikipedia.org/wiki/Sulfolobus_turreted_icosahedral_virüs_1 (erişim tarihi: 28.11.2020)
  • [18] https://viralzone.expasy.org/104 (erişim tarihi: 28.11.2020)
  • [19] La Rosa, G., Bonadonna, L., Lucentini, L., Kenmoe, S., & Suffredini, E., “Coronavirüs in water environments: Occurrence, persistence and concentration methods-A scoping review”, Water Research, 115899 (2020).
  • [20] Sellaoui, L., Badawi, M., Monari, A., Tatarchuk, T., Jemli, S., Dotto, G. L., Chen, Z., “Make it clean, make it safe: A review on virus elimination via adsorption”, Chemical Engineering Journal, 128682 (2021).
  • [21] Sidhu, J. P. S., Sena, K., Hodgers, L., Palmer, A., “Toze, S. Comparative enteric virüses and coliphage removal during wastewater treatment processes in a sub-tropical environment”, Science of the Total Environment, 616:669-677 (2018).
  • [22] Casanova, L., Rutala, W. A., Weber, D. J., Sobsey, M. D., “Survival of surrogate coronavirüses in water”, Water research, 43(7):1893-1898 (2009).
  • [23] Armanious, A., Aeppli, M., Jacak, R., Refardt, D., Sigstam, T., Kohn, T., & Sander, M., “Virüses at solid–water interfaces: a systematic assessment of interactions driving adsorption”, Environmental science & technology, 50(2):732-743 (2016).
  • [24] Carvajal, G., Branch, A., Sisson, S. A., Roser, D. J., van den Akker, B., Monis, P., Khan, S. J., “Virüs removal by ultrafiltration: Understanding long-term performance change by application of bayesian analysis”, Water research, 122:269-279 (2017).
  • [25] Junter, G. A., & Lebrun, L., “Cellulose-based virüs-retentive filters: a review”, Reviews in Environmental Science and Bio/Technology, 16(3):455-489 (2017).
  • [26] Rambags, F., Tanner, C. C., Stott, R., Schipper, L. A., “Bacteria and virüs removal in denitrifying bioreactors: Effects of media type and age”, Ecological Engineering, 138:46-53 (2019).
  • [27] Powell, T., Brion, G. M., Jagtoyen, M., Derbyshire, F., “Investigating the effect of carbon shape on virüs adsorption”, Environmental science & technology, 34(13): 2779-2783 (2000).
  • [28] Junter, G. A., Lebrun, L., “Polysaccharide-based chromatographic adsorbents for virüs purification and viral clearance”, Journal of Pharmaceutical Analysis, (2020).
  • [29] Xing, Y., Ellis, A., Magnuson, M., Harper Jr, W. F., “Adsorption of bacteriophage MS2 to colloids: Kinetics and particle interactions”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 585:124099 (2020).
  • [30] Minoshima, M., Lu, Y., Kimura, T., Nakano, R., Ishiguro, H., Kubota, Y., Sunada, K., “Comparison of the antiviral effect of solid-state copper and silver compounds”, Journal of Hazardous Materials, 312:1-7 (2016).
  • [31] Chrysikopoulos, C. V., & Aravantinou, A. F., “Virüs inactivation in the presence of quartz sand under static and dynamic batch conditions at different temperatures”, Journal of hazardous materials, 233:148-157 (2012).
  • [32] Mi, X., Heldt, C. L., “Adsorption of a non-enveloped mammalian virüs to functionalized nanofibers”, Colloids and Surfaces B: Biointerfaces, 121:319-324 (2014).
  • [33] Zheng, X., Chen, D., Lei, Y., Cheng, R., “Nano-TiO2 membrane adsorption reactor (MAR) for virüs removal in drinking water”, Chemical engineering journal, 230:180-187 (2013).
  • [34] Pisharody, L., Suresh, S., & Mukherji, S., “Evaluation of adsorbents and eluents for application in virüs concentration and adsorption-desorption isotherms for coliphages”, Chemical Engineering Journal, 403, 126267 (2020).
  • [35] Tiliket, G., Le Sage, D., Moules, V., Rosa-Calatrava, M., Lina, B., Valleton, J. M., Lebrun, L., “A new material for airborne virüs filtration”, Chemical engineering journal, 173(2):341-351 (2011).
  • [36] Cheng, R., Kang, M., Zhuang, S., Wang, S., Zheng, X., Pan, X., Wang, J., “Removal of bacteriophage f2 in water by Fe/Ni nanoparticles: Optimization of Fe/Ni ratio and influencing factors”, Science of the Total Environment, 649: 995-1003 (2019).
  • [37] Bright, K. R., Sicairos-Ruelas, E. E., Gundy, P. M., & Gerba, C. P., “Assessment of the antiviral properties of zeolites containing metal ions”, Food and Environmental Virology, 1(1):37 (2009).
  • [38] Mazurkow, J. M., Yüzbasi, N. S., Domagala, K. W., Pfeiffer, S., Kata, D., Graule, T., “Nano-sized copper (oxide) on alumina granules for water filtration: effect of copper oxidation state on virüs removal performance”, Environmental Science & Technology, 54(2):1214-1222 (2019).
  • [39] Matsushita, T., Suzuki, H., Shirasaki, N., Matsui, Y., Ohno, K., “Adsorptive virüs removal with super-powdered activated carbon”, Separation and Purification Technology, 107:79-84 (2013).
  • [40] Gutierrez, L., Li, X., Wang, J., Nangmenyi, G., Economy, J., Kuhlenschmidt, T. B., Nguyen, T. H., “Adsorption of rotavirüs and bacteriophage MS2 using glass fiber coated with hematite nanoparticles”, Water research, 43(20):5198-5208 (2009).
  • [41] Bradley, I., Straub, A., Maraccini, P., Markazi, S., Nguyen, T. H., “Iron oxide amended biosand filters for virüs removal”, Water research, 45(15):4501-4510 (2011).
  • [42] Domagała, K., Jacquin, C., Borlaf, M., Sinnet, B., Julian, T., Kata, D., Graule, T., “Efficiency and stability evaluation of Cu2O/MWCNTs filters for virüs removal from water”, Water research, 115879 (2020).
  • [43] Michen, B., Fritsch, J., Aneziris, C., Graule, T., “Improved virüs removal in ceramic depth filters modified with MgO”, Environmental science & technology, 47(3):1526-1533 (2013).
  • [44] Zheng, X., Chen, D., Lei, Y., & Cheng, R., “Nano-TiO2 membrane adsorption reactor (MAR) for virüs removal in drinking water”, Chemical engineering journal, 230:180-187 (2013).
  • [45] Awala, H., Gilson, J. P., Retoux, R., Boullay, P., Goupil, J. M., Valtchev, V., & Mintova, S., “Template-free nanosized faujasite-type zeolites”, Nature materials, 14(4):447-451 (2015).
  • [46] Ng, E. P., Chateigner, D., Bein, T., Valtchev, V., & Mintova, S., “Capturing ultrasmall EMT zeolite from template-free systems”, Science, 335(6064): 70-73 (2012).
  • [47] Valable, S., LAZAROVA, S. M., Anfray, C., Valtchev, V., Touzani, O., Bernaudin, M., U.S. (2020).
  • [48] Qin, Y., Wen, Z., Zhang, W., Chai, J., Liu, D., & Wu, S., “Different roles of silica nanoparticles played in virüs transport in saturated and unsaturated porous media”, Environmental Pollution, 259, 113861. (2020).
  • [49] Sun, M., Wang, H., & Li, X., “Modification of cellulose microfibers by polyglutamic acid and mesoporous silica nanoparticles for Enterovirüs 71 adsorption”, Materials letters, 277:128320 (2020).
  • [50] Kurtz-Chalot, A., Villiers, C., Pourchez, J., Boudard, D., Martini, M., Marche, P. N., Forest, V., “Impact of silica nanoparticle surface chemistry on protein corona formation and consequential interactions with biological cells”, Materials Science and Engineering: C, 75:16-24 (2017).
  • [51] Chen, Z., Hsu, F. C., Battigelli, D., & Chang, H. C., “Capture and release of virüses using amino-functionalized silica particles”, Analytica chimica acta, 569(1-2):76-82 (2006).
  • [52] Zhan, S., Yang, Y., Shen, Z., Shan, J., Li, Y., Yang, S., Zhu, D., “Efficient removal of pathogenic bacteria and virüses by multifunctional amine-modified magnetic nanoparticles”, Journal of Hazardous Materials, 274:115-123 (2014).
  • [53] Cademartiri, R., Anany, H., Gross, I., Bhayani, R., Griffiths, M., Brook, M. A., “Immobilization of bacteriophages on modified silica particles”, Biomaterials, 31(7):1904-1910 (2010).
  • [54] Doonan, C., Riccò, R., Liang, K., Bradshaw, D., & Falcaro, P., “Metal–organic frameworks at the biointerface: synthetic strategies and applications”, Accounts of chemical research, 50(6):1423-1432 (2017).
  • [55]https://eprints.soton.ac.uk/410244/1/ACR_Doonan_2017_revised_OK.pdf (erişim tarihi: 28.11.2020)
  • [56] Riccò, R., Liang, W., Li, S., Gassensmith, J. J., Caruso, F., Doonan, C., & Falcaro, P., “Metal–organic frameworks for cell and virüs biology: a perspective”, ACS nano, 12(1):13-23 (2018).
  • [57] Clark, K. J., Sarr, A. B., Grant, P. G., Phillips, T. D., & Woode, G. N., “In vitro studies on the use of clay, clay minerals and charcoal to adsorb bovine rotavirüs and bovine coronavirüs”, Veterinary microbiology, 63(2-4):137-146 (1998).
  • [58] Bone, S., Alum, A., Markovski, J., Hristovski, K., Bar-Zeev, E., Kaufman, Y., Perreault, F., “Physisorption and chemisorption of T4 bacteriophages on amino functionalized silica particles”, Journal of colloid and interface science, 532: 68-76 (2018).
  • [59] Wegmann, M., Michen, B., Luxbacher, T., Fritsch, J., & Graule, T., “Modification of ceramic microfilters with colloidal zirconia to promote the adsorption of virüses from water”, Water Research, 42(6-7):1726-1734 (2008).

A Review on the Removal of Viruses by Adsorption

Year 2023, , 257 - 266, 27.03.2023
https://doi.org/10.2339/politeknik.846059

Abstract

The potential dangers of Covid-19 (SARS-CoV-2 Infection), which spread to almost all countries from Wuhan, China’s Hubei province in 2020, have been the focus of attention of scientists worldwide Serious impact processes of Covid-19, ranging from pneumonia to severe acute respiratory infections and from kidney failure to death, continue to threaten millions of people. Isolation of pandemic species is of great importance for the development of appropriate treatment protocols in emerging viral infections. For this, it is necessary to develop existing methods as well as new methods. Viruses do not exist in living form in nature and they need other creatures to transfer their genetic material. In this respect, water resources and air appear as the most important means of transmission. Adsorption processes for the transmission means can be applied to prevent the spread of viruses and to inactivate them. In this review, the interactions of viruses with various adsorbents containing carbonaceous, oxidized, porous anf metal organic framework materials were examined. Electrostatic interactions were found to be more effective in target types of adsorbing processes of adsorbents used in water and air purification. Since the virus surface carries various organic functional groups, it is seen that it will interact with different adsorbents electrostatic and in this way they can be removed and both isolated and rendered ineffective. We think that our study will contribute to effective solutions to prevent the spread of other pathogens, including coronaviruses, by adsorption processes to be applied to air and water sources and to disinfect the specified transmission means.

Project Number

-

References

  • [1] Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Niu, P., “A novel coronavirüs from patients with pneumonia in China”, New England Journal of Medicine, (2020).
  • [2] Sohrabi, C., Alsafi, Z., O’Neill, N., Khan, M., Kerwan, A., Al-Jabir, A., Agha, R. “World Health Organization declares global emergency: A review of the 2019 novel coronavirüs (COVID-19)”, International Journal of Surgery, (2020).
  • [3] Elkholy, A. A., Grant, R., Assiri, A., Elhakim, M., Malik, M. R., Van Kerkhove, M.D., “MERS-CoV infection among healthcare workers and risk factors for death: retrospective analysis of all laboratory-confirmed cases reported to WHO from 2012 to 2 June 2018”, Journal of infection and public health, 13(3): 418-422 (2020).
  • [4] Domingo, J. L., Marquès, M., & Rovira, J., “Influence of airborne transmission of SARS-CoV-2 on COVID-19 pandemic. A review”, Environmental research, 109861. (2020).
  • [5] Guarner, J., “Three emerging coronavirüses in two decades: the story of SARS, MERS, and now COVID-19”, (2020).
  • [6] Zhang, N., Wang, L., Deng, X., Liang, R., Su, M., He, C., Du, L., “Recent advances in the detection of respiratory virüs infection in humans”, Journal of medical virology, 92(4): 408-417 (2020).
  • [7] Chisholm, P. J., Busch, J. W., Crowder, D. W., “Effects of life history and ecology on virüs evolutionary potential”, Virüs research, 265: 1-9 (2019).
  • [8] Zandi, R., Dragnea, B., Travesset, A., Podgornik, R., “On virüs growth and form”, Physics Reports, 847:1-102 (2020).
  • [9] Artika, I.M., Wiyatno, A., Ma’roef, C.N., “Pathogenic virüses: Molecular detection and characterization”, Infection, Genetics and Evolution, 81:104215 (2020).
  • [10] Annalaura, C., Ileana, F., Dasheng, L., Marco, V., “Making waves: Coronavirüs detection, presence and persistence in the water environment: State of the art and knowledge needs for public health”, Water Research, 115907 (2020).
  • [11] Shirasaki, N., Matsushita, T., Matsui, Y., Murai, K., & Aochi, A., “Elimination of representative contaminant candidate list virüses, coxsackievirüs, echovirüs, hepatitis A virüs, and norovirüs, from water by coagulation processes”, Journal of hazardous materials, 326:110-119 (2017).
  • [12] https://www.lokmanhekim.edu.tr/en/haber/bu-pandemi-son-olmayacak-sars-cov-2-ve-marifeti-covid-19/ (erişim tarihi: 28.11.2020)
  • [13] Randazzo, W., Truchado, P., Cuevas-Ferrando, E., Simón, P., Allende, A., & Sánchez, G., “SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area”, Water Research, 115942 (2020).
  • [14] https://www.detam.com.tr/corona-virüs-ve-covid19-kuresel-tehlike/ (erişim tarihi: 28.11.2020)
  • [15] http://drahmetdobrucali.com/hepatit-b/ (erişim tarihi: 28.11.2020)
  • [16] https://www.doktoroge.com/adenovirüs-enfeksiyonlari/ (erişim tarihi: 28.11.2020)
  • [17]https://en.wikipedia.org/wiki/Sulfolobus_turreted_icosahedral_virüs_1 (erişim tarihi: 28.11.2020)
  • [18] https://viralzone.expasy.org/104 (erişim tarihi: 28.11.2020)
  • [19] La Rosa, G., Bonadonna, L., Lucentini, L., Kenmoe, S., & Suffredini, E., “Coronavirüs in water environments: Occurrence, persistence and concentration methods-A scoping review”, Water Research, 115899 (2020).
  • [20] Sellaoui, L., Badawi, M., Monari, A., Tatarchuk, T., Jemli, S., Dotto, G. L., Chen, Z., “Make it clean, make it safe: A review on virus elimination via adsorption”, Chemical Engineering Journal, 128682 (2021).
  • [21] Sidhu, J. P. S., Sena, K., Hodgers, L., Palmer, A., “Toze, S. Comparative enteric virüses and coliphage removal during wastewater treatment processes in a sub-tropical environment”, Science of the Total Environment, 616:669-677 (2018).
  • [22] Casanova, L., Rutala, W. A., Weber, D. J., Sobsey, M. D., “Survival of surrogate coronavirüses in water”, Water research, 43(7):1893-1898 (2009).
  • [23] Armanious, A., Aeppli, M., Jacak, R., Refardt, D., Sigstam, T., Kohn, T., & Sander, M., “Virüses at solid–water interfaces: a systematic assessment of interactions driving adsorption”, Environmental science & technology, 50(2):732-743 (2016).
  • [24] Carvajal, G., Branch, A., Sisson, S. A., Roser, D. J., van den Akker, B., Monis, P., Khan, S. J., “Virüs removal by ultrafiltration: Understanding long-term performance change by application of bayesian analysis”, Water research, 122:269-279 (2017).
  • [25] Junter, G. A., & Lebrun, L., “Cellulose-based virüs-retentive filters: a review”, Reviews in Environmental Science and Bio/Technology, 16(3):455-489 (2017).
  • [26] Rambags, F., Tanner, C. C., Stott, R., Schipper, L. A., “Bacteria and virüs removal in denitrifying bioreactors: Effects of media type and age”, Ecological Engineering, 138:46-53 (2019).
  • [27] Powell, T., Brion, G. M., Jagtoyen, M., Derbyshire, F., “Investigating the effect of carbon shape on virüs adsorption”, Environmental science & technology, 34(13): 2779-2783 (2000).
  • [28] Junter, G. A., Lebrun, L., “Polysaccharide-based chromatographic adsorbents for virüs purification and viral clearance”, Journal of Pharmaceutical Analysis, (2020).
  • [29] Xing, Y., Ellis, A., Magnuson, M., Harper Jr, W. F., “Adsorption of bacteriophage MS2 to colloids: Kinetics and particle interactions”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 585:124099 (2020).
  • [30] Minoshima, M., Lu, Y., Kimura, T., Nakano, R., Ishiguro, H., Kubota, Y., Sunada, K., “Comparison of the antiviral effect of solid-state copper and silver compounds”, Journal of Hazardous Materials, 312:1-7 (2016).
  • [31] Chrysikopoulos, C. V., & Aravantinou, A. F., “Virüs inactivation in the presence of quartz sand under static and dynamic batch conditions at different temperatures”, Journal of hazardous materials, 233:148-157 (2012).
  • [32] Mi, X., Heldt, C. L., “Adsorption of a non-enveloped mammalian virüs to functionalized nanofibers”, Colloids and Surfaces B: Biointerfaces, 121:319-324 (2014).
  • [33] Zheng, X., Chen, D., Lei, Y., Cheng, R., “Nano-TiO2 membrane adsorption reactor (MAR) for virüs removal in drinking water”, Chemical engineering journal, 230:180-187 (2013).
  • [34] Pisharody, L., Suresh, S., & Mukherji, S., “Evaluation of adsorbents and eluents for application in virüs concentration and adsorption-desorption isotherms for coliphages”, Chemical Engineering Journal, 403, 126267 (2020).
  • [35] Tiliket, G., Le Sage, D., Moules, V., Rosa-Calatrava, M., Lina, B., Valleton, J. M., Lebrun, L., “A new material for airborne virüs filtration”, Chemical engineering journal, 173(2):341-351 (2011).
  • [36] Cheng, R., Kang, M., Zhuang, S., Wang, S., Zheng, X., Pan, X., Wang, J., “Removal of bacteriophage f2 in water by Fe/Ni nanoparticles: Optimization of Fe/Ni ratio and influencing factors”, Science of the Total Environment, 649: 995-1003 (2019).
  • [37] Bright, K. R., Sicairos-Ruelas, E. E., Gundy, P. M., & Gerba, C. P., “Assessment of the antiviral properties of zeolites containing metal ions”, Food and Environmental Virology, 1(1):37 (2009).
  • [38] Mazurkow, J. M., Yüzbasi, N. S., Domagala, K. W., Pfeiffer, S., Kata, D., Graule, T., “Nano-sized copper (oxide) on alumina granules for water filtration: effect of copper oxidation state on virüs removal performance”, Environmental Science & Technology, 54(2):1214-1222 (2019).
  • [39] Matsushita, T., Suzuki, H., Shirasaki, N., Matsui, Y., Ohno, K., “Adsorptive virüs removal with super-powdered activated carbon”, Separation and Purification Technology, 107:79-84 (2013).
  • [40] Gutierrez, L., Li, X., Wang, J., Nangmenyi, G., Economy, J., Kuhlenschmidt, T. B., Nguyen, T. H., “Adsorption of rotavirüs and bacteriophage MS2 using glass fiber coated with hematite nanoparticles”, Water research, 43(20):5198-5208 (2009).
  • [41] Bradley, I., Straub, A., Maraccini, P., Markazi, S., Nguyen, T. H., “Iron oxide amended biosand filters for virüs removal”, Water research, 45(15):4501-4510 (2011).
  • [42] Domagała, K., Jacquin, C., Borlaf, M., Sinnet, B., Julian, T., Kata, D., Graule, T., “Efficiency and stability evaluation of Cu2O/MWCNTs filters for virüs removal from water”, Water research, 115879 (2020).
  • [43] Michen, B., Fritsch, J., Aneziris, C., Graule, T., “Improved virüs removal in ceramic depth filters modified with MgO”, Environmental science & technology, 47(3):1526-1533 (2013).
  • [44] Zheng, X., Chen, D., Lei, Y., & Cheng, R., “Nano-TiO2 membrane adsorption reactor (MAR) for virüs removal in drinking water”, Chemical engineering journal, 230:180-187 (2013).
  • [45] Awala, H., Gilson, J. P., Retoux, R., Boullay, P., Goupil, J. M., Valtchev, V., & Mintova, S., “Template-free nanosized faujasite-type zeolites”, Nature materials, 14(4):447-451 (2015).
  • [46] Ng, E. P., Chateigner, D., Bein, T., Valtchev, V., & Mintova, S., “Capturing ultrasmall EMT zeolite from template-free systems”, Science, 335(6064): 70-73 (2012).
  • [47] Valable, S., LAZAROVA, S. M., Anfray, C., Valtchev, V., Touzani, O., Bernaudin, M., U.S. (2020).
  • [48] Qin, Y., Wen, Z., Zhang, W., Chai, J., Liu, D., & Wu, S., “Different roles of silica nanoparticles played in virüs transport in saturated and unsaturated porous media”, Environmental Pollution, 259, 113861. (2020).
  • [49] Sun, M., Wang, H., & Li, X., “Modification of cellulose microfibers by polyglutamic acid and mesoporous silica nanoparticles for Enterovirüs 71 adsorption”, Materials letters, 277:128320 (2020).
  • [50] Kurtz-Chalot, A., Villiers, C., Pourchez, J., Boudard, D., Martini, M., Marche, P. N., Forest, V., “Impact of silica nanoparticle surface chemistry on protein corona formation and consequential interactions with biological cells”, Materials Science and Engineering: C, 75:16-24 (2017).
  • [51] Chen, Z., Hsu, F. C., Battigelli, D., & Chang, H. C., “Capture and release of virüses using amino-functionalized silica particles”, Analytica chimica acta, 569(1-2):76-82 (2006).
  • [52] Zhan, S., Yang, Y., Shen, Z., Shan, J., Li, Y., Yang, S., Zhu, D., “Efficient removal of pathogenic bacteria and virüses by multifunctional amine-modified magnetic nanoparticles”, Journal of Hazardous Materials, 274:115-123 (2014).
  • [53] Cademartiri, R., Anany, H., Gross, I., Bhayani, R., Griffiths, M., Brook, M. A., “Immobilization of bacteriophages on modified silica particles”, Biomaterials, 31(7):1904-1910 (2010).
  • [54] Doonan, C., Riccò, R., Liang, K., Bradshaw, D., & Falcaro, P., “Metal–organic frameworks at the biointerface: synthetic strategies and applications”, Accounts of chemical research, 50(6):1423-1432 (2017).
  • [55]https://eprints.soton.ac.uk/410244/1/ACR_Doonan_2017_revised_OK.pdf (erişim tarihi: 28.11.2020)
  • [56] Riccò, R., Liang, W., Li, S., Gassensmith, J. J., Caruso, F., Doonan, C., & Falcaro, P., “Metal–organic frameworks for cell and virüs biology: a perspective”, ACS nano, 12(1):13-23 (2018).
  • [57] Clark, K. J., Sarr, A. B., Grant, P. G., Phillips, T. D., & Woode, G. N., “In vitro studies on the use of clay, clay minerals and charcoal to adsorb bovine rotavirüs and bovine coronavirüs”, Veterinary microbiology, 63(2-4):137-146 (1998).
  • [58] Bone, S., Alum, A., Markovski, J., Hristovski, K., Bar-Zeev, E., Kaufman, Y., Perreault, F., “Physisorption and chemisorption of T4 bacteriophages on amino functionalized silica particles”, Journal of colloid and interface science, 532: 68-76 (2018).
  • [59] Wegmann, M., Michen, B., Luxbacher, T., Fritsch, J., & Graule, T., “Modification of ceramic microfilters with colloidal zirconia to promote the adsorption of virüses from water”, Water Research, 42(6-7):1726-1734 (2008).
There are 59 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Muhammet Eren This is me 0000-0002-7851-6926

Elif Tanaydın This is me 0000-0001-7359-0687

Hasan Arslanoğlu 0000-0002-3132-4468

Harun Çiftçi 0000-0002-3210-5566

Project Number -
Publication Date March 27, 2023
Submission Date December 24, 2020
Published in Issue Year 2023

Cite

APA Eren, M., Tanaydın, E., Arslanoğlu, H., Çiftçi, H. (2023). Adsorpsiyon ile Virüslerin Giderilmesine İlişkin Bir İnceleme. Politeknik Dergisi, 26(1), 257-266. https://doi.org/10.2339/politeknik.846059
AMA Eren M, Tanaydın E, Arslanoğlu H, Çiftçi H. Adsorpsiyon ile Virüslerin Giderilmesine İlişkin Bir İnceleme. Politeknik Dergisi. March 2023;26(1):257-266. doi:10.2339/politeknik.846059
Chicago Eren, Muhammet, Elif Tanaydın, Hasan Arslanoğlu, and Harun Çiftçi. “Adsorpsiyon Ile Virüslerin Giderilmesine İlişkin Bir İnceleme”. Politeknik Dergisi 26, no. 1 (March 2023): 257-66. https://doi.org/10.2339/politeknik.846059.
EndNote Eren M, Tanaydın E, Arslanoğlu H, Çiftçi H (March 1, 2023) Adsorpsiyon ile Virüslerin Giderilmesine İlişkin Bir İnceleme. Politeknik Dergisi 26 1 257–266.
IEEE M. Eren, E. Tanaydın, H. Arslanoğlu, and H. Çiftçi, “Adsorpsiyon ile Virüslerin Giderilmesine İlişkin Bir İnceleme”, Politeknik Dergisi, vol. 26, no. 1, pp. 257–266, 2023, doi: 10.2339/politeknik.846059.
ISNAD Eren, Muhammet et al. “Adsorpsiyon Ile Virüslerin Giderilmesine İlişkin Bir İnceleme”. Politeknik Dergisi 26/1 (March 2023), 257-266. https://doi.org/10.2339/politeknik.846059.
JAMA Eren M, Tanaydın E, Arslanoğlu H, Çiftçi H. Adsorpsiyon ile Virüslerin Giderilmesine İlişkin Bir İnceleme. Politeknik Dergisi. 2023;26:257–266.
MLA Eren, Muhammet et al. “Adsorpsiyon Ile Virüslerin Giderilmesine İlişkin Bir İnceleme”. Politeknik Dergisi, vol. 26, no. 1, 2023, pp. 257-66, doi:10.2339/politeknik.846059.
Vancouver Eren M, Tanaydın E, Arslanoğlu H, Çiftçi H. Adsorpsiyon ile Virüslerin Giderilmesine İlişkin Bir İnceleme. Politeknik Dergisi. 2023;26(1):257-66.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.