Review
BibTex RIS Cite

Havacılıkta Elektrik Enerjisi Kullanımı, Perspektif ve Uygulamalar

Year 2021, , 1605 - 1610, 01.12.2021
https://doi.org/10.2339/politeknik.852272

Abstract

Elektrikli uçak konsepti, çevresel ve ekonomik nedenlerle son zamanlarda sanayide ilgi görmektedir. Yakın zamanda yapılan araştırmalar, Daha Fazla Elektrikli Uçak uygulamasının, aynı uçak üreticisinin önceki konvansiyonel modeline kıyasla emisyonlarda yaklaşık %20, gürültüde %50 ve yakıt tüketimlerinde %20 azalma sağlayabileceğini göstermektedir. Sivil havacılığın tüm insan kaynaklı emisyonların %2'sinden fazlasından sorumlu olduğu düşünüldüğünde, bu alandaki her iyileştirme önemlidir. Elektrik, emisyonları azaltma hedeflerine ulaşmada önemli bir etken olarak görünmektedir. Bu makalede, havacılıkta elektrik enerjisi kullanım eğilimi ve literatürde elektrikli uçak tanımının gelişimi ele alınmıştır. Elektrik enerjisi depolama ve yönetimi alanındaki kazanımlara paralel olarak elektrik enerjisi kullanımının da büyük ilgi gördüğü görülmektedir. Bu makale, elektrik enerjisinin uçak tahrik ve sistemlerinde kullanılmasını mümkün kılan temel teknolojik gelişmeleri sunmakta ve havacılığın daha fazla elektrifikasyonu için gelecekteki zorlukları tartışmaktadır.

References

  • [1] M. Kayton, “One Hundred Years of Aircraft Electronics,” Engineering, 26(2), 193–213, (2003).
  • [2] E. Stuhlinger, “Electric Propulsion Development,” AIAA J., 1(4), 987–988, (1963).
  • [3] W. Cao, B. C. Mecrow, G. J. Atkinson, J. W. Bennett, and D. J. Atkinson, “Overview of electric motor technologies used for more electric aircraft (MEA),” IEEE Trans. Ind. Electron., 59(9), 3523–3531, (2012).
  • [4] J. S. Cloyd, “Status of the United States Air Force’s More Electric Aircraft initiative,” IEEE Aerosp. Electron. Syst. Mag., 13(4), 17–22, (1998).
  • [5] M. J. Cronin, “All-electric vs conventional aircraft,” J. Aircr., 20(6), 481–486, (1983).
  • [6] A. S. Gohardani, G. Doulgeris, and R. Singh, “Challenges of future aircraft propulsion: A review of distributed propulsion technology and its potential application for the all electric commercial aircraft,” Prog. Aerosp. Sci.,. 47(5), 369–391, (2011).
  • [7] J. W. Langelaan et al., “Green flight challenge: aircraft design and flight planning for extreme fuel efficiency,” J. Aircr., 50(3), 832–846, (2013).
  • [8] R. E. J. Quigley, “More Electric Aircraft,” Proceedings Eighth Annual Applied Power Electronics Conference and Exposition, 906–911, (1993).
  • [9] R. I. Jones, “The More Electric Aircraft: the past and the future?,” IEE Colloquium. Electrical Machines and Systems for the More Electric Aircraft, 1-4, (1999).
  • [10] “Brditschka HB-3” https://en.wikipedia.org/wiki/Brditschka_HB-3 (2016).
  • [11] A. Emadi, M. Ehsani, and J. M. Miller, "Vehicular Electric Power Systems Land, Air, and Space Vehicles". Marcel Dekker, (2004).
  • [12] C. R. Avery, S. G. Burrow, and P. H. Mellor, “Electrical generation and distribution for the more electric aircraft,” Proc. Univ. Power Eng. Conf., 1007–1012, (2007).
  • [13] J. C. Shaw, S. D. A. Fletcher, P. J. Norman, and S. J. Galloway, “More electric power system concepts for an environmentally responsible aircraft (N+2),” Proc. Univ. Power Eng. Conf., (2012).
  • [14] Flight Path 2050. Europe’s Vision for Aviation. European Union, (2011).
  • [15] W. Pearson, “The More Electric/All Electric aircraft - a military fast jet perspective,” IEE Colloq. All Electr. Aircr., 5–5, (1998).
  • [16] R. T. Naayagi, “A review of more electric aircraft technology,” 2013 International Conference on Energy Efficient Technologies for Sustainability, 750–753, (2013).
  • [17] C. Friedrich and P. A. Robertson, “Hybrid-Electric Propulsion for Aircraft,” J. Aircr., 52(1), 176–189, (2015).
  • [18] P. Wheeler and S. Bozhko, “The More Electric Aircraft: Technology and challenges.,” IEEE Electrif. Mag., 2(4), 6–12, (2014).
  • [19] J. A. Weimer, “Electrical power technology for the more electric aircraft,” AIAA/IEEE Digital Avionics Systems Conference, 445–450, (1993).
  • [20] J. A. Rosero, J. A. Ortega, E. Aldabas, and L. Romeral, “Moving towards a more electric aircraft,” IEEE Aerosp. Electron. Syst. Mag., 22(3),. 3–9, (2007).
  • [21] A. Mcloughlin, “More Electric – Ready for take off ?,” 13th European Conference on Power Electronics and Applications, 1–7, (2009).
  • [22] R. Gandolfi, L. F. Pellegrini, and S. De Oliveira, “More electric aircraft analysis using exergy as a design comparison tool,” 48th AIAA Aerosp. Sci. Meet. Incl. New Horizons Forum Aerosp. Expo., 1–11, (2010).
  • [23] S. Wu and Y. Li, “Application and challenges of power electronics for variable frequency electric power system of more electric aircraft,” 2011 Int. Conf. Electr. Mach. Syst., 1–4, (2011).
  • [24] T. X. Wu, J. Zumberge, and M. Wolff, “On regenerative power management in More Electric Aircraft (MEA) power system,” Natl. Aerosp. Electron. Conf. Proc. IEEE, 211–214, (2011).
  • [25] A. Barzegar, R. Su, C. Wen, L. Rajabpour, Y. Zhang, and M. Y. Lee, “Intelligent Power Allocation and Load Management of More Electric Aircraft,” IEEE PEDS, 533–538, (2015).
  • [26] R. . R. A. Marsh et al., “Li ion batteries for aerospace applications,” J. Power Sources, 97–98(1–2), 25–27, (2001).
  • [27] Y. Borthomieu, “Satellite Lithium-Ion Batteries,” Lithium-Ion Batteries, 311–344, (2014).
  • [28] National Transportation Safety Board, “Auxiliary Power Unit Battery Fire Japan Airlines Boeing 787-8,” Boston, (2013).
  • [29] N. Williard, W. He, C. Hendricks, and M. Pecht, “Lessons learned from the 787 dreamliner issue on Lithium-Ion Battery reliability,” Energies, 6(9), 4682–4695, (2013).
  • [30] H. Wang, A. Hasanzadeh, and A. Khaligh, “Transportation Electrification,” IEEE Electrification Magazine, 46–58, (2013).
  • [31] A. Ritchie and W. Howard, “Recent developments and likely advances in lithium-ion batteries,” J. Power Sources, 162(2), 809–812, (2006).
  • [32] M. A. Keyser, A. Pesaran, M. Mihalic, J. Yu, and S. Kim, “Thermal Characterization of Advanced Lithium-Ion Polymer Cells,” 2003.
  • [33] M. Keyser, A. Pesaran, S. Oweis, G. Chagnon, and C. Ashtiani, “Thermal Evaluation and Performance of High-Power Lithium-Ion Cells,” (1999).
  • [34] C. R. Pals and J. Newman, “Thermal Modeling of the Lithium/Polymer Battery I. Discharge Behavior of a Single Cell,” J. Electrochem. Soc., 142(10), 3282, (1995).
  • [35] B. Wu et al., “Thermal modelling of large-format laminated Li-ion battery and experimental validation using embedded thermocouples,” 2013 World Electr. Veh. Symp. Exhib., 1–9, (2013).
  • [36] G.-H. H. Kim, J. Gonder, J. Lustbader, and A. Pesaran, “Thermal management of batteries in advanced vehicles using phase-change materials,” World Electr. Veh. J., 2(2), 46–59, (2008).
  • [37] “Boeing website.” www.boeing.com (2016).
  • [38] M. Yildiz, H. Karakoc, and I. Dincer, “Modeling and validation of temperature changes in a pouch lithium-ion battery at various discharge rates,” Int. Commun. Heat Mass Transf., 75, 311–314, (2016).
  • [39] H. S. Hamut, “Exergy analysis of electric vehicle battery thermal management systems using transcritical CO2 vapour compression cycle,” Int. J. Exergy, 18(2), 214, (2015).
  • [40] “Flight Global on Solar One.” https://www.flightglobal.com/pdfarchive/view/1979/1979 - 2438.html (2016).
  • [41] “Pipistrel company website.” www.pipistrel.si (2016).
  • [42] “Flyingmag on Yunnec E430.” http://www.flyingmag.com/news/yuneecs-e430-electric-airplane-has-25-hours-endurance (2016).
  • [43] “Flight Global on EADS Cri-cri.” https://www.flightglobal.com/news/articles/all-electric-eads-cri-cri-takes-to-the-skies-346933/ (2016).
  • [44] “Alisport website.” http://www.alisport.com (2016).
  • [45] “Airbus efan website.” http://www.airbusgroup.com/int/en/corporate-social-responsibility/airbus-e-fan-the-future-of-electric-aircraft.html (2016).
  • [46] Commercial Aircraft Propulsion and Energy Systems Research. National Academies Press, Washington, D.C., (2016).
  • [47] Steering Committee for NASA Technology Roadmaps, NASA Space Technology Roadmaps and Priorities Revisited. National Academies Press, Washington, D.C.:, (2016).
  • [48] A. Misra, “Technology Challenges for Electric Aircraft,” (2012).
  • [49] B. Nykvist and M. Nilsson, “Rapidly falling costs of battery packs for electric vehicles,” Nat. Clim. Chang.,5(4), (2015).
  • [50] G. Zubi, R. Dufo-López, M. Carvalho, and G. Pasaoglu, “The lithium-ion battery: State of the art and future perspectives,” Renew. Sustain. Energy Rev., 89, 292–308, (2018).

Electric Energy Use in Aviation, Perspective and Applications

Year 2021, , 1605 - 1610, 01.12.2021
https://doi.org/10.2339/politeknik.852272

Abstract

The electric aircraft concept is recently gaining interest in the industry, due to environmental and economic reasons. Recent research shows that More Electric Aircraft applications may provide around a 20% decrease in CO2 and NOx emissions, a 50% decrease in noise, and a 20% reduction in fuel consumption compared to the previous conventional version of the same aircraft manufacturer. Considering that civil aviation is responsible for over 2% of all man-made emissions, any improvement is important in this area. Electric power seems an important player in achieving the goals of reducing emissions. This paper reviews the trend of electric energy use in aviation and the development of the definition of electric aircraft in the literature. It is seen that electric energy use is gaining great interest parallel to the achievements in electric energy storage and management. This paper presents the key technological changes that made it possible to use electric energy in aircraft propulsion and systems and discusses the future challenges for further electrification of aviation.

References

  • [1] M. Kayton, “One Hundred Years of Aircraft Electronics,” Engineering, 26(2), 193–213, (2003).
  • [2] E. Stuhlinger, “Electric Propulsion Development,” AIAA J., 1(4), 987–988, (1963).
  • [3] W. Cao, B. C. Mecrow, G. J. Atkinson, J. W. Bennett, and D. J. Atkinson, “Overview of electric motor technologies used for more electric aircraft (MEA),” IEEE Trans. Ind. Electron., 59(9), 3523–3531, (2012).
  • [4] J. S. Cloyd, “Status of the United States Air Force’s More Electric Aircraft initiative,” IEEE Aerosp. Electron. Syst. Mag., 13(4), 17–22, (1998).
  • [5] M. J. Cronin, “All-electric vs conventional aircraft,” J. Aircr., 20(6), 481–486, (1983).
  • [6] A. S. Gohardani, G. Doulgeris, and R. Singh, “Challenges of future aircraft propulsion: A review of distributed propulsion technology and its potential application for the all electric commercial aircraft,” Prog. Aerosp. Sci.,. 47(5), 369–391, (2011).
  • [7] J. W. Langelaan et al., “Green flight challenge: aircraft design and flight planning for extreme fuel efficiency,” J. Aircr., 50(3), 832–846, (2013).
  • [8] R. E. J. Quigley, “More Electric Aircraft,” Proceedings Eighth Annual Applied Power Electronics Conference and Exposition, 906–911, (1993).
  • [9] R. I. Jones, “The More Electric Aircraft: the past and the future?,” IEE Colloquium. Electrical Machines and Systems for the More Electric Aircraft, 1-4, (1999).
  • [10] “Brditschka HB-3” https://en.wikipedia.org/wiki/Brditschka_HB-3 (2016).
  • [11] A. Emadi, M. Ehsani, and J. M. Miller, "Vehicular Electric Power Systems Land, Air, and Space Vehicles". Marcel Dekker, (2004).
  • [12] C. R. Avery, S. G. Burrow, and P. H. Mellor, “Electrical generation and distribution for the more electric aircraft,” Proc. Univ. Power Eng. Conf., 1007–1012, (2007).
  • [13] J. C. Shaw, S. D. A. Fletcher, P. J. Norman, and S. J. Galloway, “More electric power system concepts for an environmentally responsible aircraft (N+2),” Proc. Univ. Power Eng. Conf., (2012).
  • [14] Flight Path 2050. Europe’s Vision for Aviation. European Union, (2011).
  • [15] W. Pearson, “The More Electric/All Electric aircraft - a military fast jet perspective,” IEE Colloq. All Electr. Aircr., 5–5, (1998).
  • [16] R. T. Naayagi, “A review of more electric aircraft technology,” 2013 International Conference on Energy Efficient Technologies for Sustainability, 750–753, (2013).
  • [17] C. Friedrich and P. A. Robertson, “Hybrid-Electric Propulsion for Aircraft,” J. Aircr., 52(1), 176–189, (2015).
  • [18] P. Wheeler and S. Bozhko, “The More Electric Aircraft: Technology and challenges.,” IEEE Electrif. Mag., 2(4), 6–12, (2014).
  • [19] J. A. Weimer, “Electrical power technology for the more electric aircraft,” AIAA/IEEE Digital Avionics Systems Conference, 445–450, (1993).
  • [20] J. A. Rosero, J. A. Ortega, E. Aldabas, and L. Romeral, “Moving towards a more electric aircraft,” IEEE Aerosp. Electron. Syst. Mag., 22(3),. 3–9, (2007).
  • [21] A. Mcloughlin, “More Electric – Ready for take off ?,” 13th European Conference on Power Electronics and Applications, 1–7, (2009).
  • [22] R. Gandolfi, L. F. Pellegrini, and S. De Oliveira, “More electric aircraft analysis using exergy as a design comparison tool,” 48th AIAA Aerosp. Sci. Meet. Incl. New Horizons Forum Aerosp. Expo., 1–11, (2010).
  • [23] S. Wu and Y. Li, “Application and challenges of power electronics for variable frequency electric power system of more electric aircraft,” 2011 Int. Conf. Electr. Mach. Syst., 1–4, (2011).
  • [24] T. X. Wu, J. Zumberge, and M. Wolff, “On regenerative power management in More Electric Aircraft (MEA) power system,” Natl. Aerosp. Electron. Conf. Proc. IEEE, 211–214, (2011).
  • [25] A. Barzegar, R. Su, C. Wen, L. Rajabpour, Y. Zhang, and M. Y. Lee, “Intelligent Power Allocation and Load Management of More Electric Aircraft,” IEEE PEDS, 533–538, (2015).
  • [26] R. . R. A. Marsh et al., “Li ion batteries for aerospace applications,” J. Power Sources, 97–98(1–2), 25–27, (2001).
  • [27] Y. Borthomieu, “Satellite Lithium-Ion Batteries,” Lithium-Ion Batteries, 311–344, (2014).
  • [28] National Transportation Safety Board, “Auxiliary Power Unit Battery Fire Japan Airlines Boeing 787-8,” Boston, (2013).
  • [29] N. Williard, W. He, C. Hendricks, and M. Pecht, “Lessons learned from the 787 dreamliner issue on Lithium-Ion Battery reliability,” Energies, 6(9), 4682–4695, (2013).
  • [30] H. Wang, A. Hasanzadeh, and A. Khaligh, “Transportation Electrification,” IEEE Electrification Magazine, 46–58, (2013).
  • [31] A. Ritchie and W. Howard, “Recent developments and likely advances in lithium-ion batteries,” J. Power Sources, 162(2), 809–812, (2006).
  • [32] M. A. Keyser, A. Pesaran, M. Mihalic, J. Yu, and S. Kim, “Thermal Characterization of Advanced Lithium-Ion Polymer Cells,” 2003.
  • [33] M. Keyser, A. Pesaran, S. Oweis, G. Chagnon, and C. Ashtiani, “Thermal Evaluation and Performance of High-Power Lithium-Ion Cells,” (1999).
  • [34] C. R. Pals and J. Newman, “Thermal Modeling of the Lithium/Polymer Battery I. Discharge Behavior of a Single Cell,” J. Electrochem. Soc., 142(10), 3282, (1995).
  • [35] B. Wu et al., “Thermal modelling of large-format laminated Li-ion battery and experimental validation using embedded thermocouples,” 2013 World Electr. Veh. Symp. Exhib., 1–9, (2013).
  • [36] G.-H. H. Kim, J. Gonder, J. Lustbader, and A. Pesaran, “Thermal management of batteries in advanced vehicles using phase-change materials,” World Electr. Veh. J., 2(2), 46–59, (2008).
  • [37] “Boeing website.” www.boeing.com (2016).
  • [38] M. Yildiz, H. Karakoc, and I. Dincer, “Modeling and validation of temperature changes in a pouch lithium-ion battery at various discharge rates,” Int. Commun. Heat Mass Transf., 75, 311–314, (2016).
  • [39] H. S. Hamut, “Exergy analysis of electric vehicle battery thermal management systems using transcritical CO2 vapour compression cycle,” Int. J. Exergy, 18(2), 214, (2015).
  • [40] “Flight Global on Solar One.” https://www.flightglobal.com/pdfarchive/view/1979/1979 - 2438.html (2016).
  • [41] “Pipistrel company website.” www.pipistrel.si (2016).
  • [42] “Flyingmag on Yunnec E430.” http://www.flyingmag.com/news/yuneecs-e430-electric-airplane-has-25-hours-endurance (2016).
  • [43] “Flight Global on EADS Cri-cri.” https://www.flightglobal.com/news/articles/all-electric-eads-cri-cri-takes-to-the-skies-346933/ (2016).
  • [44] “Alisport website.” http://www.alisport.com (2016).
  • [45] “Airbus efan website.” http://www.airbusgroup.com/int/en/corporate-social-responsibility/airbus-e-fan-the-future-of-electric-aircraft.html (2016).
  • [46] Commercial Aircraft Propulsion and Energy Systems Research. National Academies Press, Washington, D.C., (2016).
  • [47] Steering Committee for NASA Technology Roadmaps, NASA Space Technology Roadmaps and Priorities Revisited. National Academies Press, Washington, D.C.:, (2016).
  • [48] A. Misra, “Technology Challenges for Electric Aircraft,” (2012).
  • [49] B. Nykvist and M. Nilsson, “Rapidly falling costs of battery packs for electric vehicles,” Nat. Clim. Chang.,5(4), (2015).
  • [50] G. Zubi, R. Dufo-López, M. Carvalho, and G. Pasaoglu, “The lithium-ion battery: State of the art and future perspectives,” Renew. Sustain. Energy Rev., 89, 292–308, (2018).
There are 50 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Review Article
Authors

Melih Yıldız 0000-0002-7546-4462

Publication Date December 1, 2021
Submission Date January 2, 2021
Published in Issue Year 2021

Cite

APA Yıldız, M. (2021). Electric Energy Use in Aviation, Perspective and Applications. Politeknik Dergisi, 24(4), 1605-1610. https://doi.org/10.2339/politeknik.852272
AMA Yıldız M. Electric Energy Use in Aviation, Perspective and Applications. Politeknik Dergisi. December 2021;24(4):1605-1610. doi:10.2339/politeknik.852272
Chicago Yıldız, Melih. “Electric Energy Use in Aviation, Perspective and Applications”. Politeknik Dergisi 24, no. 4 (December 2021): 1605-10. https://doi.org/10.2339/politeknik.852272.
EndNote Yıldız M (December 1, 2021) Electric Energy Use in Aviation, Perspective and Applications. Politeknik Dergisi 24 4 1605–1610.
IEEE M. Yıldız, “Electric Energy Use in Aviation, Perspective and Applications”, Politeknik Dergisi, vol. 24, no. 4, pp. 1605–1610, 2021, doi: 10.2339/politeknik.852272.
ISNAD Yıldız, Melih. “Electric Energy Use in Aviation, Perspective and Applications”. Politeknik Dergisi 24/4 (December 2021), 1605-1610. https://doi.org/10.2339/politeknik.852272.
JAMA Yıldız M. Electric Energy Use in Aviation, Perspective and Applications. Politeknik Dergisi. 2021;24:1605–1610.
MLA Yıldız, Melih. “Electric Energy Use in Aviation, Perspective and Applications”. Politeknik Dergisi, vol. 24, no. 4, 2021, pp. 1605-10, doi:10.2339/politeknik.852272.
Vancouver Yıldız M. Electric Energy Use in Aviation, Perspective and Applications. Politeknik Dergisi. 2021;24(4):1605-10.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.