Research Article
BibTex RIS Cite

Design and Simulation of Autopilot for Fixed Wing Aircraft

Year 2022, , 1523 - 1534, 16.12.2022
https://doi.org/10.2339/politeknik.894796

Abstract

In this article, autopilot design and simulation for manned and unmanned fixed wing aircraft has been performed. First, two different platform models, which are nonlinear, were linearized under the equilibrium (trim) conditions determined in Matlab/Simulink environment and the linear models obtained were compared with the nonlinear models. PID based autopilot was developed and tested for the two platform models. Test results are provided. The software in loop (SIL) based simulation environment was prepared with the X-Plane program of the autopilot and the simulation results were shown. In addition, a structural change was made in one of the platforms, and both PID and LQR-based autopilot were developed and tested for the new platform that emerged after structural changes. Test results are provided. Finally, the effect of weight change due to structural change on the autopilot on the platform was examined. It has been demonstrated by setting up test and simulation environments that the control methods discussed are applicable for autopilot systems and can be used for new fixed-wing aircraft models. With the developed autopilot systems and the simulation infrastructure installed, it has become possible to reduce the number of flight tests needed on the real platform and the cost.

References

  • [1] Bento M., Unmanned aerial vehicles: An overview, Inside GNSS, 3(1) ,54-61, (2008).
  • [2] Nelson R. C., ‘Flight Stability and Automatic Control’, McGraw-Hill, New York, A.B.D., (1998).
  • [3] Ogata K., ‘Modern Control Engineering’, Prentice Hall, New Jersey, A.B.D., (2010).
  • [4] Christiansen R., Design of an Autopilot for Small Unmanned Air Vehicles, Master Thesis, BYU, College of Engineering and Technology, Utah-A.B.D., (2004).
  • [5] Johansen I. H., Autopilot Design for Unmanned Aerial Vehicles, Master Thesis, NTNU, Faculty of Information Technology, Trondheim-Norveç, (2012).
  • [6] Chen X., Haq E., Lin J., Design, Modeling and Tuning of Modified PID Controller for Autopilot in MAVs, 2016 17th IEEE SNPD Conference, Shanghai-Çin, 475-480, (2016).
  • [7] Armah S., Yi S., Choi W., Shin D., Feedback Control of Quad-Rotors with a Matlab-Based Simulator, American Journal of Applied Sciences, 13(6), 779-793, (2016).
  • [8] Arıbal S., Development of an Autopilot for Automatic Landing of an Unmannded Aerial Vehicle, Master Thesis, METU, Natural and Applied Sciences, Ankara-Türkiye, (2011).
  • [9] Sartori D., Design, Implementation and Testing of Advanced Control Laws for Fixed-Wing UAVs, PhD Thesis, Politecnico di Torino, Course in Engineering, Torino-İtalya, (2014).
  • [10] Phillips A., A Study of Advanced Modern Control Techniques Applied to a Twin Rotor MIMO System, Master Thesis, RIT, College of Engineering, New York-A.B.D., (2014).
  • [11] Malik S., Singh S., LQR and Tuned PID Controller Design and Simulation for Aircraft Pitch Control Using Matlab, International Journal of Scientific Research And Education, 5(4), 6291-6298, (2017).
  • [12] Al-Mahturi A., Wahid H., Optimal Tuning of Linear Quadratic Regulator Controller Using a Particle Swarm Optimization for Two-Rotor Aerodynamical System, WASET International Journal of Electronics and Communication Engineering, 11(2), 196-102, (2017).
  • [13] Kizir S., Denge Kontrol Sisteminin LQR ile Gerçek Zamanlı Durum Geri Beslemeli Kontrolü, Journal of Polytechnic, 22(4), 1023-1030, (2019).
  • [14] Ribeiro L., Oliveira N., UAV Autopilot Controllers Test Platform Using Matlab/Simulink and X-Plane, 2010 IEEE FIE Conference, Washington-A.B.D., S2H1-S2H6, (2010).
  • [15] Bittar A., Figuereido H., Guimaraes P., Mendes A., Guidance Software-In-the-Loop Simulation Using X-Plane and Simulink for UAVs, 2014 ICUAS Conference, Orlando- A.B.D., 993-1002, (2014).
  • [16] Yalçın M., Ersoy E., Designing Autopilot System for Fixed-Wing Flight Mode of a Tilt-Rotor UAV in a Virtual Environment: X-Plane, International Advanced Researches and Engineering Journal, 2(1), 33-42, (2018).
  • [17] Rauw M., FDC 1.2 – A Simulink Toolbox for Flight Dynamics and Control Analysis, http://www.dutchroll.com, Yayın tarihi 2001, Erişim tarihi (2019).
  • [18] Campa G., Airlib Library, http://www.mathworks.com/matlabcentral/fileexchange/3019-airlib, Yayın tarihi 2003, Erişim tarihi (2019).
  • [19] Textron Aviation, Cessna Skyhawk Specifications,https://cessna.txtav.com/en/piston/cessna-skyhawk, Yayın tarihi 2003, Erişim tarihi (2019).

Sabit Kanatlı Hava Araçları için Otopilot Tasarımı ve Benzetimi

Year 2022, , 1523 - 1534, 16.12.2022
https://doi.org/10.2339/politeknik.894796

Abstract

Bu makalede insanlı ve insansız sabit kanatlı hava araçları için otopilot tasarımı ve benzetimi gerçekleştirilmiştir. Öncelikle doğrusal olmayan iki farklı platform modeli, Matlab/Simulink ortamında belirlenen denge (trim) koşullarında doğrusallaştırılmış ve elde edilen doğrusal modeller ile doğrusal olmayan modellerin karşılaştırması yapılmıştır. Seçilen iki farklı platform modeli için Matlab/Simulink ortamında PID tabanlı otopilotun geliştirilmesi ve testi yapılmıştır. Test sonuçları verilmiştir. Geliştirilen otopilotun X-Plane programı ile yazılım döngüsü (SIL) tabanlı benzetim ortamı hazırlanmış ve benzetim sonuçları gösterilmiştir. Buna ek olarak, platformlardan bir tanesinde yapısal değişikliğe gidilmiş ve yapısal değişiklikler sonrasında ortaya çıkan yeni platform için Matlab/Simulink ortamında hem PID tabanlı hemde LQR tabanlı otopilot geliştirilmesi ve testi yapılmıştır. Test sonuçları verilmiştir. Son olarak platformda yapısal değişimden kaynaklı ağırlık değişiminin otopilot üzerine etkisi incelenmiştir. Ele alınan kontrol yöntemlerinin, otopilot sistemleri için uygulanabilir olduğu ve yeni geliştirilecek sabit kanatlı hava aracı modelleri için kullanılabilir olduğu test ve benzetim ortamları kurularak gösterilmiştir. Geliştirilen otopilot sistemleri, kurulan benzetim altyapısı ile gerçek platform üzerinde ihtiyaç duyulan uçuş test sayısı ve maliyetin azaltılmasının mümkün hale gelmiştir.

References

  • [1] Bento M., Unmanned aerial vehicles: An overview, Inside GNSS, 3(1) ,54-61, (2008).
  • [2] Nelson R. C., ‘Flight Stability and Automatic Control’, McGraw-Hill, New York, A.B.D., (1998).
  • [3] Ogata K., ‘Modern Control Engineering’, Prentice Hall, New Jersey, A.B.D., (2010).
  • [4] Christiansen R., Design of an Autopilot for Small Unmanned Air Vehicles, Master Thesis, BYU, College of Engineering and Technology, Utah-A.B.D., (2004).
  • [5] Johansen I. H., Autopilot Design for Unmanned Aerial Vehicles, Master Thesis, NTNU, Faculty of Information Technology, Trondheim-Norveç, (2012).
  • [6] Chen X., Haq E., Lin J., Design, Modeling and Tuning of Modified PID Controller for Autopilot in MAVs, 2016 17th IEEE SNPD Conference, Shanghai-Çin, 475-480, (2016).
  • [7] Armah S., Yi S., Choi W., Shin D., Feedback Control of Quad-Rotors with a Matlab-Based Simulator, American Journal of Applied Sciences, 13(6), 779-793, (2016).
  • [8] Arıbal S., Development of an Autopilot for Automatic Landing of an Unmannded Aerial Vehicle, Master Thesis, METU, Natural and Applied Sciences, Ankara-Türkiye, (2011).
  • [9] Sartori D., Design, Implementation and Testing of Advanced Control Laws for Fixed-Wing UAVs, PhD Thesis, Politecnico di Torino, Course in Engineering, Torino-İtalya, (2014).
  • [10] Phillips A., A Study of Advanced Modern Control Techniques Applied to a Twin Rotor MIMO System, Master Thesis, RIT, College of Engineering, New York-A.B.D., (2014).
  • [11] Malik S., Singh S., LQR and Tuned PID Controller Design and Simulation for Aircraft Pitch Control Using Matlab, International Journal of Scientific Research And Education, 5(4), 6291-6298, (2017).
  • [12] Al-Mahturi A., Wahid H., Optimal Tuning of Linear Quadratic Regulator Controller Using a Particle Swarm Optimization for Two-Rotor Aerodynamical System, WASET International Journal of Electronics and Communication Engineering, 11(2), 196-102, (2017).
  • [13] Kizir S., Denge Kontrol Sisteminin LQR ile Gerçek Zamanlı Durum Geri Beslemeli Kontrolü, Journal of Polytechnic, 22(4), 1023-1030, (2019).
  • [14] Ribeiro L., Oliveira N., UAV Autopilot Controllers Test Platform Using Matlab/Simulink and X-Plane, 2010 IEEE FIE Conference, Washington-A.B.D., S2H1-S2H6, (2010).
  • [15] Bittar A., Figuereido H., Guimaraes P., Mendes A., Guidance Software-In-the-Loop Simulation Using X-Plane and Simulink for UAVs, 2014 ICUAS Conference, Orlando- A.B.D., 993-1002, (2014).
  • [16] Yalçın M., Ersoy E., Designing Autopilot System for Fixed-Wing Flight Mode of a Tilt-Rotor UAV in a Virtual Environment: X-Plane, International Advanced Researches and Engineering Journal, 2(1), 33-42, (2018).
  • [17] Rauw M., FDC 1.2 – A Simulink Toolbox for Flight Dynamics and Control Analysis, http://www.dutchroll.com, Yayın tarihi 2001, Erişim tarihi (2019).
  • [18] Campa G., Airlib Library, http://www.mathworks.com/matlabcentral/fileexchange/3019-airlib, Yayın tarihi 2003, Erişim tarihi (2019).
  • [19] Textron Aviation, Cessna Skyhawk Specifications,https://cessna.txtav.com/en/piston/cessna-skyhawk, Yayın tarihi 2003, Erişim tarihi (2019).
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Yasemin Çantaş 0000-0001-6539-8361

Ahmet Akbulut 0000-0001-8868-7385

Publication Date December 16, 2022
Submission Date March 10, 2021
Published in Issue Year 2022

Cite

APA Çantaş, Y., & Akbulut, A. (2022). Sabit Kanatlı Hava Araçları için Otopilot Tasarımı ve Benzetimi. Politeknik Dergisi, 25(4), 1523-1534. https://doi.org/10.2339/politeknik.894796
AMA Çantaş Y, Akbulut A. Sabit Kanatlı Hava Araçları için Otopilot Tasarımı ve Benzetimi. Politeknik Dergisi. December 2022;25(4):1523-1534. doi:10.2339/politeknik.894796
Chicago Çantaş, Yasemin, and Ahmet Akbulut. “Sabit Kanatlı Hava Araçları için Otopilot Tasarımı Ve Benzetimi”. Politeknik Dergisi 25, no. 4 (December 2022): 1523-34. https://doi.org/10.2339/politeknik.894796.
EndNote Çantaş Y, Akbulut A (December 1, 2022) Sabit Kanatlı Hava Araçları için Otopilot Tasarımı ve Benzetimi. Politeknik Dergisi 25 4 1523–1534.
IEEE Y. Çantaş and A. Akbulut, “Sabit Kanatlı Hava Araçları için Otopilot Tasarımı ve Benzetimi”, Politeknik Dergisi, vol. 25, no. 4, pp. 1523–1534, 2022, doi: 10.2339/politeknik.894796.
ISNAD Çantaş, Yasemin - Akbulut, Ahmet. “Sabit Kanatlı Hava Araçları için Otopilot Tasarımı Ve Benzetimi”. Politeknik Dergisi 25/4 (December 2022), 1523-1534. https://doi.org/10.2339/politeknik.894796.
JAMA Çantaş Y, Akbulut A. Sabit Kanatlı Hava Araçları için Otopilot Tasarımı ve Benzetimi. Politeknik Dergisi. 2022;25:1523–1534.
MLA Çantaş, Yasemin and Ahmet Akbulut. “Sabit Kanatlı Hava Araçları için Otopilot Tasarımı Ve Benzetimi”. Politeknik Dergisi, vol. 25, no. 4, 2022, pp. 1523-34, doi:10.2339/politeknik.894796.
Vancouver Çantaş Y, Akbulut A. Sabit Kanatlı Hava Araçları için Otopilot Tasarımı ve Benzetimi. Politeknik Dergisi. 2022;25(4):1523-34.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.