Research Article
BibTex RIS Cite

Dondurarak Kurutulan Yaban Mersininin (Vaccinium Myrtillus) Kinetik Modeli Ve Efektif Difüzivitesi

Year 2022, , 1217 - 1224, 01.10.2022
https://doi.org/10.2339/politeknik.917063

Abstract

Bu çalışmada dondurarak kurutma (FD) yöntemi kullanılmıştır. Bu yöntem, ürünlerin raf ömrünü uzatması ve içeriğindeki faydalı aromaları koruması ile son yıllarda kullanılan ve en sağlıklı olarak gösterilen kurutma yöntemidir. Kurutmak için meyveler arasında önemli bir yere sahip olan antioksidan, antimikrobiyal, antiseptik vb. özelliklere sahip meyve olan yaban mersini (Vaccinium Myrtillus) kullanılmıştır. Çalışmada 100 gr ve 5 mm et kalınlığına sahip yaban mersinleri kurutma cihazının içerisine yerleştirilmiş, 14 saat kurutma işlemine tabi tutularak her iki saatte bir ağırlık kayıpları gözlemlenerek veriler işlenmiştir. Elde edilen verilere Matlab programı kullanılarak 8 farklı kinetik kurutma modeli uygulanmıştır. Uygulama sonucunda tahmini standart hatalar olan (RMSE), ki-kare (X2), regresyon katsayıları (R2) hesaplanmış, hata analizleri yapılmış ve R2, X2, RMSE değerleri sırasıyla 0,014686, 2,875 x 10-4 ve 0,9978 olarak bulunmuştur. Bu sonuçlara göre en uygun modelin Page modeli olduğu belirlenmiştir. Ayrıca yaban mersini için efektif difüzivite katsayılarının 2.57665 × 10-12 m2/s olarak hesaplanmıştır.

Supporting Institution

Karabük Üniversitesi

References

  • [1] Moraga, G., Talens, P., Moraga, M. J., and Martínez-Navarrete, N., "Implication of water activity and glass transition on the mechanical and optical properties of freeze-dried apple and banana slices", Journal Of Food Engineering, 106 (3): 212–219 (2011).
  • [2] Wang, J., Li, Y. Z., Chen, R. R., Bao, J. Y., and Yang, G. M., "Comparison of volatiles of banana powder dehydrated by vacuum belt drying, freeze-drying and air-drying", Food Chemistry, 104 (4): 1516–1521 (2007).
  • [3] Khampakool, A., Soisungwan, S., and Park, S. H., "Potential application of infrared assisted freeze drying (IRAFD) for banana snacks: Drying kinetics, energy consumption, and texture", Lwt, 99: 355–363 (2019).
  • [4] Zaichick, V. and Zaichick, S., "A search for losses of chemical elements during freeze-drying of biological materials", Journal Of Radioanalytical And Nuclear Chemistry, 218 (2): 249–253 (1997).
  • [5] Jiang, H., Zhang, M., and Mujumdar, A. S., "Physico-chemical changes during different stages of MFD/FD banana chips", Journal Of Food Engineering, 101 (2): 140–145 (2010).
  • [6] Reyes, A., Evseev, A., Mahn, A., Bubnovich, V., Bustos, R., and Scheuermann, E., "Effect of operating conditions in freeze-drying on the nutritional properties of blueberries", International Journal Of Food Sciences And Nutrition, 62 (3): 303–306 (2011).
  • [7] Nemzer, B., Vargas, L., Xia, X., Sintara, M., and Feng, H., "Phytochemical and physical properties of blueberries, tart cherries, strawberries, and cranberries as affected by different drying methods", Food Chemistry, 262: 242–250 (2018).
  • [8] Ngo, H. T., Tojo, S., Ban, T., and Chosa, T., "Effects of prior freezing conditions on the quality of blueberries in a freeze-drying process", Transactions Of The ASABE, 60 (4): 1369 (2017).
  • [9] Fan, K., Zhang, M., and Mujumdar, A. S., "Recent developments in high efficient freeze-drying of fruits and vegetables assisted by microwave: A review", Critical Reviews In Food Science And Nutrition, 59 (8): 1357–1366 (2019).
  • [10] Liović, N., Bratanić, A., Zorić, Z., Pedisić, S., Režek Jambrak, A., Krešić, G., and Bilušić, T., "The effect of freeze‐drying, pasteurisation and high‐intensity ultrasound on gastrointestinal stability and antioxidant activity of blueberry phenolics", International Journal Of Food Science & Technology, 56 (4): 1996–2008 (2021).
  • [11] Harguindeguy, M. and Fissore, D., "On the effects of freeze-drying processes on the nutritional properties of foodstuff: A review", Drying Technology, 38 (7): 846–868 (2020).
  • [12] Kırmacı, V., Usta, H., and Menlik, T., "An experimental study on freeze-drying behavior of strawberries", Drying Technology, 26 (12): 1570–1576 (2008)
  • [13] Austin, M. E., "Rabbiteye blueberries: development, production and marketing", (1994).
  • [14] Pritts, M. P., Hancock, J. F., Strik, B., Eames-Sheavly, M., and Celentano, D., .
  • [15] Prior, R. L., Cao, G., Martin, A., Sofic, E., McEwen, J., O’Brien, C., Lischner, N., Ehlenfeldt, M., Kalt, W., and Krewer, G., "Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species", Journal Of Agricultural And Food Chemistry, 46 (7): 2686–2693 (1998).
  • [16] Sadikoglu, H., Liapis, A. I., and Crosser, O. K., "Optimal control of the primary and secondary drying stages of bulk solution freeze drying in trays", Drying Technology, 16 (3–5): 399–431 (1998).
  • [17] Acar, B., Sadikoglu, H., and Doymaz, I., "Freeze‐Drying Kinetics and Diffusion Modeling of Saffron (C rocus sativus L.)", Journal Of Food Processing And Preservation, 39 (2): 142–149 (2015).
  • [18] Diao Y., Zhang J., Yu W., and Zhao Y., “Experimental study on the heat recovery characteristic of a plate heat pipe heat exchanger in room ventilation” Hvac&R Research, 20(7): 828-835 (2014).
  • [19] Ozgen F., Esen M., and Esen H., “Experimental investigation of thermal performance of a double-flow solar air heater having aluminium cans” Renewable Energy, 34(11): 2391-2398 (2009)
  • [20] Menges, H. O. and Ertekin, C., "Mathematical modeling of thin layer drying of Golden apples", Journal Of Food Engineering, 77 (1): 119–125 (2006).
  • [21] Vega‐Gálvez, A., Miranda, M., Bilbao‐Sáinz, C., Uribe, E., and Lemus‐Mondaca, R., "Empirical modeling of drying process for apple (Cv. Granny Smith) slices at different air temperatures", Journal Of Food Processing And Preservation, 32 (6): 972–986 (2008).
  • [22] Rayaguru, K., Routray, W., and Mohanty, S. N., "Mathematical modeling and quality parameters of air‐dried betel leaf (piper betle L.)", Journal Of Food Processing And Preservation, 35 (4): 394–401 (2011)
  • [23] Acar B., Dağdeviren, A., and Özkaymak, M., "Design of Hazelnut Drying System Supported By Solar Energy, Investigation of Drying Performance and Determination of Proper Drying Model", International Journal of Renewable Energy Research, 10: 570-577 (2020).
  • [24] Acar B., Dağdeviren, A., and Özkaymak, M., “Dondurularak Kurutulan Muzun Kinetik Modeli” 4th International Symposium on Innovative Approaches in Engineering and Natural Science, 22-24 Kasım 2019.

Kinetic Model And Effective Diffusivity Of Frozen-Dryed European Blueberry (Vaccinium Myrtillus)

Year 2022, , 1217 - 1224, 01.10.2022
https://doi.org/10.2339/politeknik.917063

Abstract

In current study, the freeze-drying (FD) method has been investigated. This method is the healthiest drying method that used in recent years by extending the shelf life of the products and preserving the beneficial flavors in its content. Antioxidant, antimicrobial, antidiabetic, anti-inflammatory, antiseptic, etc., are the most emphasized role among the berries. Thus, blueberry is one of the great aspects to be a case for drying. Blueberry (Vaccinium Myrtillus), which is an opulent source of many phenolic compounds with known properties, has been determined. In the study, blueberries by the weight of 100 g and with a thickness of 5 mm were placed in the drying device, and the data were processed by observing the weight loss every two hours after being subjected to the drying process for 14 hours. 8 different kinetic drying models were applied to the acquired data using the Matlab program. As a result of the application, the estimated standard errors (RMSE), chi-square (X2), regression coefficients (R2) were calculated, error analysis was performed, R2, X2, and RMSE values were found, as 1.4686 ×10-2, 2.875×10-4 and 9.978 ×10-1. According to these results, it was determined that the most suitable model is the Page model. Also, the effective diffusivity coefficients for blueberries were calculated as 2.57665 × 10-12 m2/s.

References

  • [1] Moraga, G., Talens, P., Moraga, M. J., and Martínez-Navarrete, N., "Implication of water activity and glass transition on the mechanical and optical properties of freeze-dried apple and banana slices", Journal Of Food Engineering, 106 (3): 212–219 (2011).
  • [2] Wang, J., Li, Y. Z., Chen, R. R., Bao, J. Y., and Yang, G. M., "Comparison of volatiles of banana powder dehydrated by vacuum belt drying, freeze-drying and air-drying", Food Chemistry, 104 (4): 1516–1521 (2007).
  • [3] Khampakool, A., Soisungwan, S., and Park, S. H., "Potential application of infrared assisted freeze drying (IRAFD) for banana snacks: Drying kinetics, energy consumption, and texture", Lwt, 99: 355–363 (2019).
  • [4] Zaichick, V. and Zaichick, S., "A search for losses of chemical elements during freeze-drying of biological materials", Journal Of Radioanalytical And Nuclear Chemistry, 218 (2): 249–253 (1997).
  • [5] Jiang, H., Zhang, M., and Mujumdar, A. S., "Physico-chemical changes during different stages of MFD/FD banana chips", Journal Of Food Engineering, 101 (2): 140–145 (2010).
  • [6] Reyes, A., Evseev, A., Mahn, A., Bubnovich, V., Bustos, R., and Scheuermann, E., "Effect of operating conditions in freeze-drying on the nutritional properties of blueberries", International Journal Of Food Sciences And Nutrition, 62 (3): 303–306 (2011).
  • [7] Nemzer, B., Vargas, L., Xia, X., Sintara, M., and Feng, H., "Phytochemical and physical properties of blueberries, tart cherries, strawberries, and cranberries as affected by different drying methods", Food Chemistry, 262: 242–250 (2018).
  • [8] Ngo, H. T., Tojo, S., Ban, T., and Chosa, T., "Effects of prior freezing conditions on the quality of blueberries in a freeze-drying process", Transactions Of The ASABE, 60 (4): 1369 (2017).
  • [9] Fan, K., Zhang, M., and Mujumdar, A. S., "Recent developments in high efficient freeze-drying of fruits and vegetables assisted by microwave: A review", Critical Reviews In Food Science And Nutrition, 59 (8): 1357–1366 (2019).
  • [10] Liović, N., Bratanić, A., Zorić, Z., Pedisić, S., Režek Jambrak, A., Krešić, G., and Bilušić, T., "The effect of freeze‐drying, pasteurisation and high‐intensity ultrasound on gastrointestinal stability and antioxidant activity of blueberry phenolics", International Journal Of Food Science & Technology, 56 (4): 1996–2008 (2021).
  • [11] Harguindeguy, M. and Fissore, D., "On the effects of freeze-drying processes on the nutritional properties of foodstuff: A review", Drying Technology, 38 (7): 846–868 (2020).
  • [12] Kırmacı, V., Usta, H., and Menlik, T., "An experimental study on freeze-drying behavior of strawberries", Drying Technology, 26 (12): 1570–1576 (2008)
  • [13] Austin, M. E., "Rabbiteye blueberries: development, production and marketing", (1994).
  • [14] Pritts, M. P., Hancock, J. F., Strik, B., Eames-Sheavly, M., and Celentano, D., .
  • [15] Prior, R. L., Cao, G., Martin, A., Sofic, E., McEwen, J., O’Brien, C., Lischner, N., Ehlenfeldt, M., Kalt, W., and Krewer, G., "Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species", Journal Of Agricultural And Food Chemistry, 46 (7): 2686–2693 (1998).
  • [16] Sadikoglu, H., Liapis, A. I., and Crosser, O. K., "Optimal control of the primary and secondary drying stages of bulk solution freeze drying in trays", Drying Technology, 16 (3–5): 399–431 (1998).
  • [17] Acar, B., Sadikoglu, H., and Doymaz, I., "Freeze‐Drying Kinetics and Diffusion Modeling of Saffron (C rocus sativus L.)", Journal Of Food Processing And Preservation, 39 (2): 142–149 (2015).
  • [18] Diao Y., Zhang J., Yu W., and Zhao Y., “Experimental study on the heat recovery characteristic of a plate heat pipe heat exchanger in room ventilation” Hvac&R Research, 20(7): 828-835 (2014).
  • [19] Ozgen F., Esen M., and Esen H., “Experimental investigation of thermal performance of a double-flow solar air heater having aluminium cans” Renewable Energy, 34(11): 2391-2398 (2009)
  • [20] Menges, H. O. and Ertekin, C., "Mathematical modeling of thin layer drying of Golden apples", Journal Of Food Engineering, 77 (1): 119–125 (2006).
  • [21] Vega‐Gálvez, A., Miranda, M., Bilbao‐Sáinz, C., Uribe, E., and Lemus‐Mondaca, R., "Empirical modeling of drying process for apple (Cv. Granny Smith) slices at different air temperatures", Journal Of Food Processing And Preservation, 32 (6): 972–986 (2008).
  • [22] Rayaguru, K., Routray, W., and Mohanty, S. N., "Mathematical modeling and quality parameters of air‐dried betel leaf (piper betle L.)", Journal Of Food Processing And Preservation, 35 (4): 394–401 (2011)
  • [23] Acar B., Dağdeviren, A., and Özkaymak, M., "Design of Hazelnut Drying System Supported By Solar Energy, Investigation of Drying Performance and Determination of Proper Drying Model", International Journal of Renewable Energy Research, 10: 570-577 (2020).
  • [24] Acar B., Dağdeviren, A., and Özkaymak, M., “Dondurularak Kurutulan Muzun Kinetik Modeli” 4th International Symposium on Innovative Approaches in Engineering and Natural Science, 22-24 Kasım 2019.
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Mutlucan Ayrıksa This is me 0000-0003-0785-6381

Bahadir Acar 0000-0002-9494-6301

Abdullah Dağdeviren 0000-0002-5418-4445

Khandan Roshanaeı 0000-0002-1469-8812

Tuba Coşkun 0000-0003-2274-3481

Göknur Kayataş Ongun 0000-0003-1811-1975

Prof. Dr. Mehmet Özkaymak 0000-0002-4575-8988

Publication Date October 1, 2022
Submission Date April 15, 2021
Published in Issue Year 2022

Cite

APA Ayrıksa, M., Acar, B., Dağdeviren, A., Roshanaeı, K., et al. (2022). Kinetic Model And Effective Diffusivity Of Frozen-Dryed European Blueberry (Vaccinium Myrtillus). Politeknik Dergisi, 25(3), 1217-1224. https://doi.org/10.2339/politeknik.917063
AMA Ayrıksa M, Acar B, Dağdeviren A, Roshanaeı K, Coşkun T, Kayataş Ongun G, Özkaymak PDM. Kinetic Model And Effective Diffusivity Of Frozen-Dryed European Blueberry (Vaccinium Myrtillus). Politeknik Dergisi. October 2022;25(3):1217-1224. doi:10.2339/politeknik.917063
Chicago Ayrıksa, Mutlucan, Bahadir Acar, Abdullah Dağdeviren, Khandan Roshanaeı, Tuba Coşkun, Göknur Kayataş Ongun, and Prof. Dr. Mehmet Özkaymak. “Kinetic Model And Effective Diffusivity Of Frozen-Dryed European Blueberry (Vaccinium Myrtillus)”. Politeknik Dergisi 25, no. 3 (October 2022): 1217-24. https://doi.org/10.2339/politeknik.917063.
EndNote Ayrıksa M, Acar B, Dağdeviren A, Roshanaeı K, Coşkun T, Kayataş Ongun G, Özkaymak PDM (October 1, 2022) Kinetic Model And Effective Diffusivity Of Frozen-Dryed European Blueberry (Vaccinium Myrtillus). Politeknik Dergisi 25 3 1217–1224.
IEEE M. Ayrıksa, B. Acar, A. Dağdeviren, K. Roshanaeı, T. Coşkun, G. Kayataş Ongun, and P. D. M. Özkaymak, “Kinetic Model And Effective Diffusivity Of Frozen-Dryed European Blueberry (Vaccinium Myrtillus)”, Politeknik Dergisi, vol. 25, no. 3, pp. 1217–1224, 2022, doi: 10.2339/politeknik.917063.
ISNAD Ayrıksa, Mutlucan et al. “Kinetic Model And Effective Diffusivity Of Frozen-Dryed European Blueberry (Vaccinium Myrtillus)”. Politeknik Dergisi 25/3 (October 2022), 1217-1224. https://doi.org/10.2339/politeknik.917063.
JAMA Ayrıksa M, Acar B, Dağdeviren A, Roshanaeı K, Coşkun T, Kayataş Ongun G, Özkaymak PDM. Kinetic Model And Effective Diffusivity Of Frozen-Dryed European Blueberry (Vaccinium Myrtillus). Politeknik Dergisi. 2022;25:1217–1224.
MLA Ayrıksa, Mutlucan et al. “Kinetic Model And Effective Diffusivity Of Frozen-Dryed European Blueberry (Vaccinium Myrtillus)”. Politeknik Dergisi, vol. 25, no. 3, 2022, pp. 1217-24, doi:10.2339/politeknik.917063.
Vancouver Ayrıksa M, Acar B, Dağdeviren A, Roshanaeı K, Coşkun T, Kayataş Ongun G, Özkaymak PDM. Kinetic Model And Effective Diffusivity Of Frozen-Dryed European Blueberry (Vaccinium Myrtillus). Politeknik Dergisi. 2022;25(3):1217-24.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.