Research Article
BibTex RIS Cite

Paralel Aktif Güç Filtresinin Döngüde Donanım Destekli (DDD) Matlab/ Simulink Ortak Benzetimi

Year 2023, , 29 - 37, 27.03.2023
https://doi.org/10.2339/politeknik.938480

Abstract

Yarıiletken devre elemanları, merkezi kontrol birimi (MKB) ve algoritmanın içinde bulunduğu yazılım güç elektroniği uygulamalarının temel taşlarını oluşturmaktadırlar. Merkezi işlem biriminde oluşabilecek hatalar güç katında yarıiletken elemanlara zarar verebilmektedir. Dolaysıyla deneysel çalışma öncesi bir güç elektroniği uygulaması için hazırlanan yazılımın işlemci donanımının kendisini kullanarak donanım destekli benzetimi faydalı olacaktır. Bu çalışmada Paralel Aktif Güç Filtresi (PAGF) sisteminin ortak benzetim modeli Simulink’te hazırlanarak, dijital işaret işlemci (DSP) yazılımı ve donanımı kullanılarak test edilmekte ve donanımsız benzetim sonuçlarıyla karşılaştırılmaktadır. DSP’ye Simulink benzetimindeki güç katından gelen gerilim, akım verileri burada işlenerek kontrol sinyalleri donanım içerisinde oluşturulmakta, DSP’de oluşturulan bu sinyaller Simulink ortamına alınarak hazırlanan modelin evirici kısmına uygulanmaktadır. Deneysel çalışma öncesi DSP’nin yazılım testinin yapıldığı bu donanım destekli ortak benzetim modeli diğer güç elektroniği uygulamalarına ortak benzetim ortamı hazırlamaktadır. Döngüde donanım destekli 3 fazlı PAGF ortak simülasyon modeli Matlab / Simulink ortamında hazırlanmış, test edilmiş ve benzetim sonuçları sunulmuştur.

Supporting Institution

Dicle Üniversitesi

Project Number

MÜHENDİSLİK.19.002

Thanks

Bu çalışma, Dicle Üniversitesi Bilimsel Araştırmalar Projesi (DÜBAP) birimi tarafından desteklenen MÜHENDİSLİK.19.002 kodlu proje için gerçekleştirilmiştir. Projeye katkısından dolayı yazarlar DÜBAP' a teşekkür eder.

References

  • [1] Cengiz Ç. B., “3 Fazlı 4 Telli Paralel Aktif Güç Filtresi Tasarımı ve Gerçekleştirilmesi”, Yüksek Lisans Tezi, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, (2014).
  • [2] Mahesh, K., Mishra, K., Karthikeyan, and P.K., Linash, “A development and implementation of DSP based DSTATCOM to compensate unbalanced nonlinear loads, in Proc. IEEE Power India Conf., New Delhi-Hindistan, 8, (2006).
  • [3] Singh, B., Al-Haddad, K., and Chandra, A., “A review of active power filters for power quality improvement”, IEEE Trans. Industrial Electronics, 46: 960-971, (1999).
  • [4] Yanbo, C., Fudan, Z., and Cheng, K.W.E., “Shunt active power filter-SIMULINK simulation and DSP-based hardware realization”, Power Electronics Systems and Applications Conf., Hong Kong-China, 120-125, (2006).
  • [5] Sarıkan A., Aydemir M. T., “Real-Time Simulation and Hardware In The Loop: Applications and Restrictions”, Journal of the Faculty of Engineering and Architecture of Gazi University, 24:517-524, (2009).
  • [6] Taoka, H., Iyoda, I., Noguchi, H., Sato, N., Nakazawa, T., Yamazaki, A., “Real-Time Digital Simulator with Digital/Analog Conversion Interface for Testing Power Instruments”, IEEE Transactions on Power Systems, 9: 862-868, (1994).
  • [7] Youcefa B. E., Massoum A., Barkat S., Bella S. and Wira P., “A processor in the loop implementation for a grid connected photovoltaic system considering power quality issues”, International Conference on Applied Smart Systems, Medea- Algeria, 1-6, (2018).
  • [8] Li H., Gole A. M. and Man H. C.N., “Controller Implementation and Performance Evaluation of a High Power Three-Phase Active Power Filter using Controller Hardware-in-the-Loop Simulation”, IEEE Electrical Power and Energy Conference, Toronto, 1-6, (2018).
  • [9] Silva Junior D.C., Musse B. F., Silva N. F., Almeida P. M. and Oliveira J. G., “Hardware In The Loop Simulation Of Shunt Active Power Filter Utilizing RTDS And dSPACE”, Brazilian Power Electronics Conference, Brazil, 1-6, (2017).
  • [10] Donuk H., Gümüş B., “Use Of Dual Hysteresis Band In Parallel Active Power Filters”, International Engineering and Natural Sciences Conference, 1795-1806, Diyarbakir, (2019).
  • [11] Pak L.F., Dinavahi V., Chang G., Steurer M., Ribeiro P.F., “Real-Time Digital Time-Varying Harmonic Modeling and Simulation Techniques”, IEEE Transactions On Power Delivery, 22:1218-1227, (2007).
  • [12] Liao X., Feng Z., Schulz K., Unbehauen R., “A Digital Real-Time Simulation Model of Fault Operation States in a Power Transmission System Using Multiple Moduli”, Electrical Engineering, 82:347-352, (2000).
  • [13] Liu Z., Song Q., Zhang H., Liu W., “Real- Time Digital Simulation for a 50MVAr Cascaded Multilevel STATCOM”, International Conference on Power System Technology, Chongqing, China, 1-6, (2006).
  • [14] Matar M., Abdel-Rahman M., Soliman A.M., “FPGA-Based Real-Time Digital Simulation”, International Conference on Power Systems Transients, Montreal, Canada, 149-154, (2005).
  • [15] Gagnon R., Sybille G., Bernard S., Paré D., Casoria S., Larose C., “Modeling and Real-Time Simulation of a Doubly-Fed Induction Generator Driven by a Wind Turbine”, International Conference on Power Systems Transients, Montreal, Canada, 162-168, (2005).
  • [16] Dufour C. and Bélanger J., “Real-time Simulation of a 48-Pulse GTO Statcom Compensated Power System on a Dual-Xeon PC using RT-LAB”, International Conference on Power Systems Transients, Montreal, Canada, 253-259 , (2005).
  • [17] Kelper B., Blanchette H.F. and Dessaint L.A., “Switching Time Model Updating for the Real- Time Simulation of Power-Electronic Circuits and Motor Drives”, IEEE Transactions on Energy Conversion, 20: 181 - 186, (2005).
  • [18] Dinavahi V.R., Iravani M.R. and Bonert R., “Real-Time Digital Simulation of Power Electronic pparatus Interfaced With Digital Controllers”, IEEE Transactions On Power Delivery, 16: 775 - 781, (2001).
  • [19] Lu B., Monti A., Dougal R.A., “Real-Time Hardware-In-the-Loop Testing During Design of Power Electronics Controls”, The 29th Annual Conference of the IEEE Industrial Electronics Society, 1840- 1845, (2003).
  • [20] Akagi H., “Active Harmonic Filters”, Proceedings of the IEEE, 93:2128-2141 (2005).
  • [21] Peng F. Z., “Application issues of active power filters”, IEEE Industrial Application Magazine, 4:21-30, (2001).
  • [22] Sargos F., “IGBT Power Electronics Teaching System Principle for sizing power converters”, Semikron Application Note, Semikron, (2008)
  • [23] Lai, J. S., “Active Power Filtering for Harmonic Compensations, ITRI Short Course Unit 7 on Power Quality and Three-Phase Power Factor Correction”, Power Quality ,InTech, China, (2000).
  • [24] Hava A. M., Kerkman R. J., Lipo T. A., “Simple analytical and graphical methods for carrier-based PWM-VSI drives”, IEEE Transactions on Power Electronics, 14: 49-61, (1999).

Hardware In The Loop (HIL) MATLAB/ Simulink Co-Simulation Of Shunt Active Power Filter

Year 2023, , 29 - 37, 27.03.2023
https://doi.org/10.2339/politeknik.938480

Abstract

Semiconductor circuit elements constitute the cornerstones of software power electronics applications, including the central control unit (MKB) and the algorithm. Faults that may occur in the central processing unit can damage the semiconductor elements on the plant. Therefore, the hardware-assisted simulation of the software prepared for a power electronics application before the experimental study by using the processor hardware itself will be useful. In this study, the common simulation model of the Shunt Active Power Filter (SAPF) system is prepared in Simulink, tested by using digital signal processor (DSP) software and hardware, and compared with the simulation results without hardware. The voltage and current data coming from the power stage in Simulink simulation to the DSP are processed here and the control signals are created in the hardware, these signals created in the DSP are taken into the Simulink environment and applied to the inverter part of the prepared model. This hardware supported common simulation model, in which software testing of the DSP is performed before the experimental study, prepares a common simulation environment for other power electronics applications. Hardware supported 3-phase SAPF co-simulation model in the loop was prepared, tested in Matlab / Simulink environment and simulation results were presented.

Project Number

MÜHENDİSLİK.19.002

References

  • [1] Cengiz Ç. B., “3 Fazlı 4 Telli Paralel Aktif Güç Filtresi Tasarımı ve Gerçekleştirilmesi”, Yüksek Lisans Tezi, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, (2014).
  • [2] Mahesh, K., Mishra, K., Karthikeyan, and P.K., Linash, “A development and implementation of DSP based DSTATCOM to compensate unbalanced nonlinear loads, in Proc. IEEE Power India Conf., New Delhi-Hindistan, 8, (2006).
  • [3] Singh, B., Al-Haddad, K., and Chandra, A., “A review of active power filters for power quality improvement”, IEEE Trans. Industrial Electronics, 46: 960-971, (1999).
  • [4] Yanbo, C., Fudan, Z., and Cheng, K.W.E., “Shunt active power filter-SIMULINK simulation and DSP-based hardware realization”, Power Electronics Systems and Applications Conf., Hong Kong-China, 120-125, (2006).
  • [5] Sarıkan A., Aydemir M. T., “Real-Time Simulation and Hardware In The Loop: Applications and Restrictions”, Journal of the Faculty of Engineering and Architecture of Gazi University, 24:517-524, (2009).
  • [6] Taoka, H., Iyoda, I., Noguchi, H., Sato, N., Nakazawa, T., Yamazaki, A., “Real-Time Digital Simulator with Digital/Analog Conversion Interface for Testing Power Instruments”, IEEE Transactions on Power Systems, 9: 862-868, (1994).
  • [7] Youcefa B. E., Massoum A., Barkat S., Bella S. and Wira P., “A processor in the loop implementation for a grid connected photovoltaic system considering power quality issues”, International Conference on Applied Smart Systems, Medea- Algeria, 1-6, (2018).
  • [8] Li H., Gole A. M. and Man H. C.N., “Controller Implementation and Performance Evaluation of a High Power Three-Phase Active Power Filter using Controller Hardware-in-the-Loop Simulation”, IEEE Electrical Power and Energy Conference, Toronto, 1-6, (2018).
  • [9] Silva Junior D.C., Musse B. F., Silva N. F., Almeida P. M. and Oliveira J. G., “Hardware In The Loop Simulation Of Shunt Active Power Filter Utilizing RTDS And dSPACE”, Brazilian Power Electronics Conference, Brazil, 1-6, (2017).
  • [10] Donuk H., Gümüş B., “Use Of Dual Hysteresis Band In Parallel Active Power Filters”, International Engineering and Natural Sciences Conference, 1795-1806, Diyarbakir, (2019).
  • [11] Pak L.F., Dinavahi V., Chang G., Steurer M., Ribeiro P.F., “Real-Time Digital Time-Varying Harmonic Modeling and Simulation Techniques”, IEEE Transactions On Power Delivery, 22:1218-1227, (2007).
  • [12] Liao X., Feng Z., Schulz K., Unbehauen R., “A Digital Real-Time Simulation Model of Fault Operation States in a Power Transmission System Using Multiple Moduli”, Electrical Engineering, 82:347-352, (2000).
  • [13] Liu Z., Song Q., Zhang H., Liu W., “Real- Time Digital Simulation for a 50MVAr Cascaded Multilevel STATCOM”, International Conference on Power System Technology, Chongqing, China, 1-6, (2006).
  • [14] Matar M., Abdel-Rahman M., Soliman A.M., “FPGA-Based Real-Time Digital Simulation”, International Conference on Power Systems Transients, Montreal, Canada, 149-154, (2005).
  • [15] Gagnon R., Sybille G., Bernard S., Paré D., Casoria S., Larose C., “Modeling and Real-Time Simulation of a Doubly-Fed Induction Generator Driven by a Wind Turbine”, International Conference on Power Systems Transients, Montreal, Canada, 162-168, (2005).
  • [16] Dufour C. and Bélanger J., “Real-time Simulation of a 48-Pulse GTO Statcom Compensated Power System on a Dual-Xeon PC using RT-LAB”, International Conference on Power Systems Transients, Montreal, Canada, 253-259 , (2005).
  • [17] Kelper B., Blanchette H.F. and Dessaint L.A., “Switching Time Model Updating for the Real- Time Simulation of Power-Electronic Circuits and Motor Drives”, IEEE Transactions on Energy Conversion, 20: 181 - 186, (2005).
  • [18] Dinavahi V.R., Iravani M.R. and Bonert R., “Real-Time Digital Simulation of Power Electronic pparatus Interfaced With Digital Controllers”, IEEE Transactions On Power Delivery, 16: 775 - 781, (2001).
  • [19] Lu B., Monti A., Dougal R.A., “Real-Time Hardware-In-the-Loop Testing During Design of Power Electronics Controls”, The 29th Annual Conference of the IEEE Industrial Electronics Society, 1840- 1845, (2003).
  • [20] Akagi H., “Active Harmonic Filters”, Proceedings of the IEEE, 93:2128-2141 (2005).
  • [21] Peng F. Z., “Application issues of active power filters”, IEEE Industrial Application Magazine, 4:21-30, (2001).
  • [22] Sargos F., “IGBT Power Electronics Teaching System Principle for sizing power converters”, Semikron Application Note, Semikron, (2008)
  • [23] Lai, J. S., “Active Power Filtering for Harmonic Compensations, ITRI Short Course Unit 7 on Power Quality and Three-Phase Power Factor Correction”, Power Quality ,InTech, China, (2000).
  • [24] Hava A. M., Kerkman R. J., Lipo T. A., “Simple analytical and graphical methods for carrier-based PWM-VSI drives”, IEEE Transactions on Power Electronics, 14: 49-61, (1999).
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Hakan Donuk 0000-0001-8046-307X

Bilal Gümüş 0000-0003-4665-5339

Project Number MÜHENDİSLİK.19.002
Publication Date March 27, 2023
Submission Date May 22, 2021
Published in Issue Year 2023

Cite

APA Donuk, H., & Gümüş, B. (2023). Paralel Aktif Güç Filtresinin Döngüde Donanım Destekli (DDD) Matlab/ Simulink Ortak Benzetimi. Politeknik Dergisi, 26(1), 29-37. https://doi.org/10.2339/politeknik.938480
AMA Donuk H, Gümüş B. Paralel Aktif Güç Filtresinin Döngüde Donanım Destekli (DDD) Matlab/ Simulink Ortak Benzetimi. Politeknik Dergisi. March 2023;26(1):29-37. doi:10.2339/politeknik.938480
Chicago Donuk, Hakan, and Bilal Gümüş. “Paralel Aktif Güç Filtresinin Döngüde Donanım Destekli (DDD) Matlab/ Simulink Ortak Benzetimi”. Politeknik Dergisi 26, no. 1 (March 2023): 29-37. https://doi.org/10.2339/politeknik.938480.
EndNote Donuk H, Gümüş B (March 1, 2023) Paralel Aktif Güç Filtresinin Döngüde Donanım Destekli (DDD) Matlab/ Simulink Ortak Benzetimi. Politeknik Dergisi 26 1 29–37.
IEEE H. Donuk and B. Gümüş, “Paralel Aktif Güç Filtresinin Döngüde Donanım Destekli (DDD) Matlab/ Simulink Ortak Benzetimi”, Politeknik Dergisi, vol. 26, no. 1, pp. 29–37, 2023, doi: 10.2339/politeknik.938480.
ISNAD Donuk, Hakan - Gümüş, Bilal. “Paralel Aktif Güç Filtresinin Döngüde Donanım Destekli (DDD) Matlab/ Simulink Ortak Benzetimi”. Politeknik Dergisi 26/1 (March 2023), 29-37. https://doi.org/10.2339/politeknik.938480.
JAMA Donuk H, Gümüş B. Paralel Aktif Güç Filtresinin Döngüde Donanım Destekli (DDD) Matlab/ Simulink Ortak Benzetimi. Politeknik Dergisi. 2023;26:29–37.
MLA Donuk, Hakan and Bilal Gümüş. “Paralel Aktif Güç Filtresinin Döngüde Donanım Destekli (DDD) Matlab/ Simulink Ortak Benzetimi”. Politeknik Dergisi, vol. 26, no. 1, 2023, pp. 29-37, doi:10.2339/politeknik.938480.
Vancouver Donuk H, Gümüş B. Paralel Aktif Güç Filtresinin Döngüde Donanım Destekli (DDD) Matlab/ Simulink Ortak Benzetimi. Politeknik Dergisi. 2023;26(1):29-37.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.