Mantarın Bağlayıcı Olarak Kullanıldığı Bir Kompozit Malzemenin Üretilmesi ve Tutuşma Süresi ile Su Alma Özelliklerinin Tespiti
Year 2022,
, 1701 - 1711, 16.12.2022
Nuriye Hande Kutbay
,
H. Güçlü Yavuzcan
,
Sinan Aktaş
Abstract
Sürdürülebilirliğin sağlanması için yenilenebilir kaynak kullanımı, atık malzemelerin hammadde olarak değerlendirilmesi, atıkların biyo-çözünürlüğünün yüksek olması gibi faktörler büyük önem arz etmektedir. Doğal lifler, yenilenebilir kaynak olarak kompozit malzeme geliştirmede kullanılabilmekte; yıllık bazda yenilenebilen tarımsal atıkların kompozit malzemelerde hammadde olarak kullanılması ise aynı zamanda atık malzemelerin malzeme döngüsüne dahil edilmesi anlamına gelmektedir. Hammadde olarak ele alındığında mantar da yenilenebilir bir kaynak olmakta; enzimleriyle bulunduğu ortamdaki doğal lifler arasında yapıştırıcı görevi gören miselyum, malzeme üretiminde kullanılabilmektedir. Mantarın ve doğal liflerin kullanıldığı kompozit malzemeler tamamen organik olan yapıları sayesinde ürün yaşam döngülerini tamamladıktan sonra doğada tamamen bozunabilmektedir. Bu çalışma kapsamında, biyolojik etkinliği yüksek olan ve hızlı lif oluşturabilen mantar türlerinden biri olan Pleurotus ostreatus türüne ait miselyumun bağlayıcı; tarımsal atık olan buğday sapının ise substrat olarak kullanıldığı ve üretimi organik bir büyüme süreci şeklinde gerçekleşen bir kompozit malzeme geliştirilmiştir. Geliştirilen malzeme alev kaynağına 10, 30 ve 60 saniye maruz bırakıldığında kararma olduğu; 67. saniyede ise tutuşmanın başladığı gözlenmiştir. 24 saat suya daldırma sonucunda su alma değerinin %257 ve suda kalınlığa şişme değerinin %2.55-3.63 arasında olduğu tespit edilmiştir.
Thanks
Bu çalışma; Gazi Üniversitesi Fen Bilimleri Enstitüsü Endüstriyel Tasarım Anabilim Dalında Tez Çalışması kapsamında gerçekleştirilmiştir.
Yöntem geliştirme konusunda vermiş olduğu destek için Prof. Dr. Gıyasettin KAŞIK’a teşekkür ederiz.
References
- [1] Bayazıt Hayta, A., "Sürdürülebilir tüketim davranısının kazanılmasında tüketici eğitiminin rolü", Ahi Evran Üniversitesi Eğitim Fakültesi Dergisi, 10 (3): 143–151 (2009).
- [2] Zeren, D. and Nakıboğlu, G., "Sürdürülebilir Ürün Tasarımında Tanım ve Yöntemler", Çukurova Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 18 (2): 458–480 (2009).
- [3] Koukios, E. G., "Knowledge-Based Greening as a New Bioeconomy Strategy for Development: Agroecological Utopia or Revolution?", Law and Agroecology: A Transdisciplinary Dialogue, 439–494
(2015).
- [4] Kannan, M. B. and Ronan, K., "Conversion of biowastes to biomaterial: An innovative waste management approach", Waste Management, 67: 67–72 (2017).
- [5] World Commission on Environment and Development, "Our Common Future (Brundtland Report)", United Nations, (1987).
- [6] Wyk, H. Van, "Biotechnology and the utilization of biowaste as a resource for bioproduct", Trends In Biotechnology, 19 (5): 172–177 (2001).
- [7] Lange, L., "The importance of fungi for a more sustainable future on our planet", Fungal Biology Reviews, 24 (3–4): 90–92 (2010).
- [8] Jiang, L., Walczyk, D., McIntyre, G., Bucinell, R., and Tudryn, G., "Manufacturing of biocomposite sandwich structures using mycelium-bound cores and preforms", Journal Of Manufacturing
Processes, 28: 50–59 (2017).
- [9] Song, Y., Youn, J., and Gutowski, T., "Life cycle energy analysis of fiber-reinforced composites", Composites Part A: Applied Science And Manufacturing, 40 (8): 1257–1265 (2009).
- [10] Jiang, L., Walczyk, D., McIntyre, G., and Chan, W. K., "Cost modeling and optimization of a manufacturing system for mycelium-based biocomposite parts", Journal Of Manufacturing Systems, 41: 8–
20 (2016).
- [11] Arifin, Y. H. and Yusuf, Y., "Mycelium fibers as new resource for environmental sustainability", Procedia Engineering, 53: 504–508 (2013).
- [12] Holt, G. A., McIntyre, G., Flagg, D., Bayer, E., Wanjura, J. D., and Pelletier, M. G., "Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material:
Evaluation study of select blends of cotton byproducts", Journal Of Biobased Materials And Bioenergy, 6 (4): 431–439 (2012).
- [13] Internet: Ecovative, "How It Works", https://www.ecovativedesign.com/how-it-works (2017).
- [14] Internet: "Hif ve Miselyum Nedir", http://www.biyodoc.com/010/hif-ve-miselyum-nedir-arasindaki-farklar.html (2021).
- [15] Stamets, P., "Mycelium Running: How Mushrooms Can Help Save the World", Ten Speed Press, New York, (2005).
- [16] Kavanagh, K., "Mantarlar: Biyoloji ve Uygulamalar", 2. Basım. Ed., Nobel Akademik Yayıncılık, (2014).
- [17] Vallas, T. and Courard, L., "Using nature in architecture: Building a living house with mycelium and trees", Frontiers Of Architectural Research, 6 (3): 318–328 (2017).
- [18] Pelletier, M. G., Holt, G. A., Wanjura, J. D., Bayer, E., and McIntyre, G., "An evaluation study of mycelium based acoustic absorbers grown on agricultural by-product substrates", Industrial Crops And
Products, 51: 480–485 (2013).
- [19] Pelletier, M. G., Holt, G. A., Wanjura, J. D., Lara, A. J., Tapia-Carillo, A., McIntyre, G., and Bayer, E., "An evaluation study of pressure-compressed acoustic absorbers grown on agricultural by-products",
Industrial Crops And Products, 95: 342–347 (2017).
- [20] Schirp, A., Loge, F., Aust, S., Swaner, P., Turner, G., and Wolcott, M., "Production and characterization of natural fiber-reinforced thermoplastic composites using wheat straw modified with the
fungus Pleurotus ostreatus", Journal Of Applied Polymer Science, 102 (6): 5191–5201 (2006).
- [21] Jones, M., Bhat, T., Huynh, T., Kandare, E., Yuen, R., Wang, C. H., and John, S., "Waste-derived low-cost mycelium composite construction materials with improved fire safety", Fire And Materials, 42
(7): 816–825 (2018).
- [22] Elsacker, E., Peeters, E., and De Laet, L., "Mycelium-based materials at the dawn of the Anthropocene", Structures and Architecture: Bridging the Gap and Crossing Borders. Lisbon, 1083-1090 (2019).
- [23] Elsacker, E., Vandelook, S., Van Wylick, A., Ruytinx, J., De Laet, L., and Peeters, E., "A comprehensive framework for the production of mycelium-based lignocellulosic composites", Science Of The
Total Environment, 725: 138431 (2020).
- [24] Elsacker, E., Søndergaard, A., Van Wylick, A., Peeters, E., and De Laet, L., "Growing living and multifunctional mycelium composites for large-scale formwork applications using robotic abrasive
wire-cutting", Construction And Building Materials, 283: 122732 (2021).
- [25] Zimele, Z., Irbe, I., Grinins, J., Bikovens, O., Verovkins, A., and Bajare, D., "Novel Mycelium-Based Biocomposites ( MBB ) as Building Materials", Journal OfRenewable Materials, 8 (9): 1067–1076
(2020).
- [26] Tacer-Caba, Z., Varis, J. J., Lankinen, P., and Mikkonen, K. S., "Comparison of novel fungal mycelia strains and sustainable growth substrates to produce humidity-resistant biocomposites",
Materials And Design, 192: 108728 (2020).
- [27] Butu, A., Rodino, S., Miu, B., and Butu, M., "Mycelium-based Materials for the Ecodesign of Bioeconomy", Digest Journal Of Nanomaterials And Biostructures, 15 (4): 1129–1140 (2020).
- [28] Joshi, K., Meher, M. K., and Poluri, K. M., "Fabrication and Characterization of Bioblocks from Agricultural Waste Using Fungal Mycelium for Renewable and Sustainable Applications", ACS
Applied Bio Materials, 3: 1884–1892 (2020).
- [29] Dias, P. P., Jayasinghe, L. B., and Waldmann, D., "Investigation of Mycelium-Miscanthus composites as building insulation material", Results In Materials, 10: 100189 (2021).
- [30] Manan, S., Ullah, M. W., Ul-Islam, M., Atta, O. M., and Yang, G., "Synthesis and applications of fungal mycelium-based advanced functional materials", Journal Of Bioresources And Bioproducts,
6 (1): 1–10 (2021).
- [31] Lelivelt, R. J. J., Lindner, G., Teuffel, P., and Lamers, H., "The production process and compressive strength of Mycelium-based materials", First International Conference on Bio-based Building
Materials, Clermont-Ferrand, 1-6 (2015).
- [32] Rafiee, K., Kaur, G., and Brar, S. K., "Fungal biocomposites: How process engineering affects composition and properties?", Bioresource Technology Reports, 14: 100692 (2021).
- [33] Yang, Z. (Joey), Zhang, F., Still, B., White, M., and Amstislavski, P., "Physical and Mechanical Properties of Fungal Mycelium-Based Biofoam", Journal Of Materials In Civil Engineering, 29 (7):
04017030 (2017).
- [34] Attias, N., Danai, O., Ezov, N., Tarazi, E., and Grobman, J. Y., "Developing novel applications of mycelium based bio-composite materials for design and architecture", Proceedings of Building
with Biobased Materials: Best practice and Performance Specification, 1-10 (2017).
- [35] Tudryn, G. J., Smith, L. C., Freitag, J., Bucinell, R., and Schadler, L. S., "Processing and Morphology Impacts on Mechanical Properties of Fungal Based Biopolymer Composites", Journal Of
Polymers And The Environment, 26: 1473–1483 (2018).
- [36] Lopes Teixeira, J., Matos, M. P., Lima Nascimento, B., Griza, S., Rodrigues Holanda, F. S., and Marino, R. H., "Production and mechanical evaluation of biodegradable composites by white rot
fungi", Ciência E Agrotecnologia, 42 (6): 676–684 (2018).
- [37] Appels, F. V. W., Dijksterhuis, J., Lukasiewicz, C. E., Jansen, K. M. B., Wösten, H. A. B., and Krijgsheld, P., "Hydrophobin gene deletion and environmental growth conditions impact mechanical properties
of mycelium by affecting the density of the material", Scientific Reports, 8: 1–7 (2018).
- [38] Appels, F. V. W. and Wosten, H., "Mycelium Materials", Encyclopedia of Mycology, Elsevier, 710–718 (2021).
- [39] Jones, M., Huynh, T., Dekiwadia, C., Daver, F., and John, S., "Mycelium Composites: A Review of Engineering Characteristics and Growth Kinetics", Journal Of Bionanoscience, 11 (4): 241–257
(2017).
- [40] Appels, F. V. W., Camere, S., Montalti, M., Karana, E., Jansen, K. M. B., Dijksterhuis, J., Krijgsheld, P., and Wösten, H. A. B., "Fabrication factors influencing mechanical, moisture- and water-related
properties of mycelium-based composites", Materials & Design, 161: 64–71 (2019).
- [41] Wimmers, G., Klick, J., Tackaberry, L., Zwiesigk, C., Egger, K., and Massicotte, H., "Fundamental Studies for Designing Insulation Panels from Wood Shavings and Filamentous Fungi", BioResources, 14
(3): 5506–5520 (2019).
- [42] Kurt, Ş., "Değişik Tarımsal Artıkların Kayın Mantarı (Pleurotus ostreatus, Pleurotus sajor-caju) Yetiştiriciliğinde Kullanım Olanakları", Doktora Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü
(2008).
- [43] Shah, Z. A., Ashraf, M., and Ishtiaq Ch, M., "No TitleComparative Study on Cultivation and Yield Performance of Oyster Mushroom (Pleurotus ostreatus) on Different Substrates (Wheat Straw,
Leaves, Saw Dust)", Pakistan Journal Of Nutrition, 3 (3): 158–160 (2004).
- [44] Moyson, E. and Verachtert, H., "Growth of higher fungi on wheat straw and their impact on the digestibility of the substrate", Applied Microbiology And Biotechnology, 36 (3): 421–424 (1991).
- [45] Philippousis, A., Diamantopoulou, P., Zervakis, G., and Ioannidou, S., "Potential for the cultivation of exotic mushroom species by exploitation of Mediterranean agricultural wastes.", Science and
Cultivation of Edible Fungi. Proceedings of the 15th International Congress on the Science and Cultivation of Edible Fungi, Maastricht, Netherlands, 523–530 (2000).
- [46] Zervakis, G., Philippoussis, A., Ioannldou, S., and Dlamantopoulou, P., "Mycelium growth kinetics and optimal temperature conditions for the cultivation of edible mushroom species on lignocellulosic substrates", Folia Microbiologica, 46 (3): 231–234 (2001).
- [47] Singh, M. P., "Biodegradation of lignocellulosic wastes through cultivation of Pleurotus sajor-caju", Science and Cultivation of Edible Fungi. Proceedings of the 15th International Congress on the Science and Cultivation of Edible Fungi, Maastricht, Netherlands, 517–521 (2000).
- [48] Singh, A. and Sharma, S., "Composting of a crop residue through treatment with microorganisms and subsequent vermicomposting", Bioresource Technology, 85 (2): 107–111 (2002).
- [49] Tsang, L. J., Reid, I. D., and Coxworth, E. C., "Delignification of Wheat Straw by Pleurotus spp. under Mushroom-Growing Conditions.", Applied And Environmental Microbiology, 53 (6): 1304–6
(1987).
- [50] Zhen, F., Yang, R., and Liu, R., "Effects of Different C:N Ratios in Compost on Nutrient Transformation and on Yield and Quality of Agaricus bisporus", Horticultural Abstracts, 67 (6): 5080 (1995).
- [51] Philippoussis, A., Zervakis, G., and Diamantopoulou, P., "Bioconversion of agricultural lignocellulosic wastes through the cultivation of the edible mushrooms Agrocybe aegerita, Volvariella
volvacea and Pleurotus spp.", World Journal Of Microbiology And Biotechnology, 17 (2): 191–200 (2001).
- [52] Adamović, M., Grubić, G., Milenković, I., Jovanović, R., Protić, R., Sretenović, L., and Stoićević, L., "The biodegradation of wheat straw by Pleurotus ostreatus mushrooms and its use in cattle
feeding", Animal Feed Science And Technology, 71 (3–4): 357–362 (1998).
- [53] Azizi, A., Fazaeli, H., and Jelan, Z. A. ., "The Effect of Growing Pleurotus Fungi on the Chemical Composition and in Vitro Digestibility of Wheat Straw", Proceedings of 99 International Conference
on Agricultural Engineering, Beijing (1999).
- [54] Gaitán-Hernández, R., Esqueda, M., Gutiérrez, A., Sánchez, A., Beltrán-García, M., and Mata, G., "Bioconversion of agrowastes by Lentinula edodes: The high potential of viticulture residues",
Applied Microbiology And Biotechnology, 71 (4): 432–439 (2006).
- [55] Jones, D., Hale, M., and Omed, H., "Cultivation of Oyster Mushrooms (Pleurotus species) to Improve the in Vitro Dry Matter Digestibility of Wheat Straw for Feeding to Ruminants", Proceedings of
the Biritish Society of Animal Science, 174 (2006).
- [56] Kakkar, V. and Dhanda, S., "Comparative evaluation of wheat and paddy straws for mushroom production and feeding residual straws to ruminants", Bioresource Technology, 66 (2): 175–177
(1999).
- [57] Kutlu, H., Özcan, N., Büyükalaca, S., Baykal, L., Görgülü, M., and Öztürkcan, O., "Buğday Samanının Yem değerinin Arttırılmasında Biyoteknolojik Yöntemlerin Kullanılma Olanakları", (1996).
- [58] Manukovsky, N., Kovalev, V., and Gribovskaya, I., "Utilization of Substrate When Growing Oyster Mushroom Pleurotus florida Fovose", Horticultural Abstracts, 69 (8): 7038 (1999).
- [59] Girometta, C., Picco, A. M., Baiguera, R. M., Dondi, D., Babbini, S., Cartabia, M., Pellegrini, M., Savino, E., Girometta, C., Picco, A. M., Baiguera, R. M., Dondi, D., Babbini, S., Cartabia, M., Pellegrini, M., and
Savino, E., "Physico-Mechanical and Thermodynamic Properties of Mycelium-Based Biocomposites: A Review", Sustainability, 11 (1): 281 (2019).
- [60] Iordache, O., Perdum, E., Mitran, E. C., Chivu, A., Dumitrescu, I., Ferdeş, M., and Săndulache, I.-M., "Novel Myco-Copmposite Material Obtained with Fusarium Oxysporum", ICAMS 2018-7 th
International Conference on Advanced Materials and Systems, 111-116 (2018).
- [61] Attias, N., Danai, O., Abitbol, T., Tarazi, E., Ezov, N., Pereman, I., and Grobman, Y. J., "Mycelium bio-composites in industrial design and architecture: Comparative review and experimental analysis",
Journal Of Cleaner Production, 246: 119037 (2020).
- [62] Elsacker, E., Vandelook, S., Brancart, J., Peeters, E., and De Laet, L., "Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic
substrates", PLoS ONE, 14 (7): (2019).
- [63] Islam, M. R., Tudryn, G., Bucinell, R., Schadler, L., and Picu, R. C., "Mechanical behavior of mycelium-based particulate composites", Journal Of Materials Science, 53: 16371–16382 (2018).
- [64] Jones, M., Bhat, T., Wang, C. H., Moinuddin, K., and John, S., "Thermal degradation and fire reaction properties of mycelium composites", Proceedings of the 21st International Conference on
Composite Materials, Xi'an (2017).
- [65] Lokko, M. J., Rowell, M., Dyson, A., and Rempel, A., "Development of Affordable Building Materials Using Agricultural Waste By-Products and Emerging Pith, Soy and Mycelium Biobinders", 32nd
International Conference on Passive and Low Energy Architecture Proceedings, Los Angeles, 881-887 (2016).
- [66] Jones, M., Mautner, A., Luenco, S., Bismarck, A., and John, S., "Engineered mycelium composite construction materials from fungal biorefineries: A critical review", Materials And Design, 187:
108397 (2020).
Producing a Composite Material Using Mushroom as Binder, Determining Its Ignition Time and Water Absorption
Year 2022,
, 1701 - 1711, 16.12.2022
Nuriye Hande Kutbay
,
H. Güçlü Yavuzcan
,
Sinan Aktaş
Abstract
Factors such as using renewable resources utilization of waste materials as raw materials, high biodegradability of wastes have major importance to ensure sustainability. Using agricultural wastes, which are renewable natural fibers on an annual basis, as raw materials in composite production also means that waste materials are kept in the material cycle. When considered as a raw material, mushroom is also a renewable resource and it takes part in material production since mycelium acts as an adhesive with its enzymes between natural fibers. Due to being completely organic, composite materials made of mushroom and natural fibers can be fully degraded in nature at the end of their product life cycle. In this study, a composite material has been developed by using wheat straw as the substrate and mycelium of Pleurotus ostreatus as the binder while the production method is an organic growth process. In flammability tests, it was measured that the ignition started at the 67th second. After immersion in water for 24 hours, it is determined that the water absorption value of the material is 257% and thickness expansion is between 2.55-3.63%.
References
- [1] Bayazıt Hayta, A., "Sürdürülebilir tüketim davranısının kazanılmasında tüketici eğitiminin rolü", Ahi Evran Üniversitesi Eğitim Fakültesi Dergisi, 10 (3): 143–151 (2009).
- [2] Zeren, D. and Nakıboğlu, G., "Sürdürülebilir Ürün Tasarımında Tanım ve Yöntemler", Çukurova Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 18 (2): 458–480 (2009).
- [3] Koukios, E. G., "Knowledge-Based Greening as a New Bioeconomy Strategy for Development: Agroecological Utopia or Revolution?", Law and Agroecology: A Transdisciplinary Dialogue, 439–494
(2015).
- [4] Kannan, M. B. and Ronan, K., "Conversion of biowastes to biomaterial: An innovative waste management approach", Waste Management, 67: 67–72 (2017).
- [5] World Commission on Environment and Development, "Our Common Future (Brundtland Report)", United Nations, (1987).
- [6] Wyk, H. Van, "Biotechnology and the utilization of biowaste as a resource for bioproduct", Trends In Biotechnology, 19 (5): 172–177 (2001).
- [7] Lange, L., "The importance of fungi for a more sustainable future on our planet", Fungal Biology Reviews, 24 (3–4): 90–92 (2010).
- [8] Jiang, L., Walczyk, D., McIntyre, G., Bucinell, R., and Tudryn, G., "Manufacturing of biocomposite sandwich structures using mycelium-bound cores and preforms", Journal Of Manufacturing
Processes, 28: 50–59 (2017).
- [9] Song, Y., Youn, J., and Gutowski, T., "Life cycle energy analysis of fiber-reinforced composites", Composites Part A: Applied Science And Manufacturing, 40 (8): 1257–1265 (2009).
- [10] Jiang, L., Walczyk, D., McIntyre, G., and Chan, W. K., "Cost modeling and optimization of a manufacturing system for mycelium-based biocomposite parts", Journal Of Manufacturing Systems, 41: 8–
20 (2016).
- [11] Arifin, Y. H. and Yusuf, Y., "Mycelium fibers as new resource for environmental sustainability", Procedia Engineering, 53: 504–508 (2013).
- [12] Holt, G. A., McIntyre, G., Flagg, D., Bayer, E., Wanjura, J. D., and Pelletier, M. G., "Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material:
Evaluation study of select blends of cotton byproducts", Journal Of Biobased Materials And Bioenergy, 6 (4): 431–439 (2012).
- [13] Internet: Ecovative, "How It Works", https://www.ecovativedesign.com/how-it-works (2017).
- [14] Internet: "Hif ve Miselyum Nedir", http://www.biyodoc.com/010/hif-ve-miselyum-nedir-arasindaki-farklar.html (2021).
- [15] Stamets, P., "Mycelium Running: How Mushrooms Can Help Save the World", Ten Speed Press, New York, (2005).
- [16] Kavanagh, K., "Mantarlar: Biyoloji ve Uygulamalar", 2. Basım. Ed., Nobel Akademik Yayıncılık, (2014).
- [17] Vallas, T. and Courard, L., "Using nature in architecture: Building a living house with mycelium and trees", Frontiers Of Architectural Research, 6 (3): 318–328 (2017).
- [18] Pelletier, M. G., Holt, G. A., Wanjura, J. D., Bayer, E., and McIntyre, G., "An evaluation study of mycelium based acoustic absorbers grown on agricultural by-product substrates", Industrial Crops And
Products, 51: 480–485 (2013).
- [19] Pelletier, M. G., Holt, G. A., Wanjura, J. D., Lara, A. J., Tapia-Carillo, A., McIntyre, G., and Bayer, E., "An evaluation study of pressure-compressed acoustic absorbers grown on agricultural by-products",
Industrial Crops And Products, 95: 342–347 (2017).
- [20] Schirp, A., Loge, F., Aust, S., Swaner, P., Turner, G., and Wolcott, M., "Production and characterization of natural fiber-reinforced thermoplastic composites using wheat straw modified with the
fungus Pleurotus ostreatus", Journal Of Applied Polymer Science, 102 (6): 5191–5201 (2006).
- [21] Jones, M., Bhat, T., Huynh, T., Kandare, E., Yuen, R., Wang, C. H., and John, S., "Waste-derived low-cost mycelium composite construction materials with improved fire safety", Fire And Materials, 42
(7): 816–825 (2018).
- [22] Elsacker, E., Peeters, E., and De Laet, L., "Mycelium-based materials at the dawn of the Anthropocene", Structures and Architecture: Bridging the Gap and Crossing Borders. Lisbon, 1083-1090 (2019).
- [23] Elsacker, E., Vandelook, S., Van Wylick, A., Ruytinx, J., De Laet, L., and Peeters, E., "A comprehensive framework for the production of mycelium-based lignocellulosic composites", Science Of The
Total Environment, 725: 138431 (2020).
- [24] Elsacker, E., Søndergaard, A., Van Wylick, A., Peeters, E., and De Laet, L., "Growing living and multifunctional mycelium composites for large-scale formwork applications using robotic abrasive
wire-cutting", Construction And Building Materials, 283: 122732 (2021).
- [25] Zimele, Z., Irbe, I., Grinins, J., Bikovens, O., Verovkins, A., and Bajare, D., "Novel Mycelium-Based Biocomposites ( MBB ) as Building Materials", Journal OfRenewable Materials, 8 (9): 1067–1076
(2020).
- [26] Tacer-Caba, Z., Varis, J. J., Lankinen, P., and Mikkonen, K. S., "Comparison of novel fungal mycelia strains and sustainable growth substrates to produce humidity-resistant biocomposites",
Materials And Design, 192: 108728 (2020).
- [27] Butu, A., Rodino, S., Miu, B., and Butu, M., "Mycelium-based Materials for the Ecodesign of Bioeconomy", Digest Journal Of Nanomaterials And Biostructures, 15 (4): 1129–1140 (2020).
- [28] Joshi, K., Meher, M. K., and Poluri, K. M., "Fabrication and Characterization of Bioblocks from Agricultural Waste Using Fungal Mycelium for Renewable and Sustainable Applications", ACS
Applied Bio Materials, 3: 1884–1892 (2020).
- [29] Dias, P. P., Jayasinghe, L. B., and Waldmann, D., "Investigation of Mycelium-Miscanthus composites as building insulation material", Results In Materials, 10: 100189 (2021).
- [30] Manan, S., Ullah, M. W., Ul-Islam, M., Atta, O. M., and Yang, G., "Synthesis and applications of fungal mycelium-based advanced functional materials", Journal Of Bioresources And Bioproducts,
6 (1): 1–10 (2021).
- [31] Lelivelt, R. J. J., Lindner, G., Teuffel, P., and Lamers, H., "The production process and compressive strength of Mycelium-based materials", First International Conference on Bio-based Building
Materials, Clermont-Ferrand, 1-6 (2015).
- [32] Rafiee, K., Kaur, G., and Brar, S. K., "Fungal biocomposites: How process engineering affects composition and properties?", Bioresource Technology Reports, 14: 100692 (2021).
- [33] Yang, Z. (Joey), Zhang, F., Still, B., White, M., and Amstislavski, P., "Physical and Mechanical Properties of Fungal Mycelium-Based Biofoam", Journal Of Materials In Civil Engineering, 29 (7):
04017030 (2017).
- [34] Attias, N., Danai, O., Ezov, N., Tarazi, E., and Grobman, J. Y., "Developing novel applications of mycelium based bio-composite materials for design and architecture", Proceedings of Building
with Biobased Materials: Best practice and Performance Specification, 1-10 (2017).
- [35] Tudryn, G. J., Smith, L. C., Freitag, J., Bucinell, R., and Schadler, L. S., "Processing and Morphology Impacts on Mechanical Properties of Fungal Based Biopolymer Composites", Journal Of
Polymers And The Environment, 26: 1473–1483 (2018).
- [36] Lopes Teixeira, J., Matos, M. P., Lima Nascimento, B., Griza, S., Rodrigues Holanda, F. S., and Marino, R. H., "Production and mechanical evaluation of biodegradable composites by white rot
fungi", Ciência E Agrotecnologia, 42 (6): 676–684 (2018).
- [37] Appels, F. V. W., Dijksterhuis, J., Lukasiewicz, C. E., Jansen, K. M. B., Wösten, H. A. B., and Krijgsheld, P., "Hydrophobin gene deletion and environmental growth conditions impact mechanical properties
of mycelium by affecting the density of the material", Scientific Reports, 8: 1–7 (2018).
- [38] Appels, F. V. W. and Wosten, H., "Mycelium Materials", Encyclopedia of Mycology, Elsevier, 710–718 (2021).
- [39] Jones, M., Huynh, T., Dekiwadia, C., Daver, F., and John, S., "Mycelium Composites: A Review of Engineering Characteristics and Growth Kinetics", Journal Of Bionanoscience, 11 (4): 241–257
(2017).
- [40] Appels, F. V. W., Camere, S., Montalti, M., Karana, E., Jansen, K. M. B., Dijksterhuis, J., Krijgsheld, P., and Wösten, H. A. B., "Fabrication factors influencing mechanical, moisture- and water-related
properties of mycelium-based composites", Materials & Design, 161: 64–71 (2019).
- [41] Wimmers, G., Klick, J., Tackaberry, L., Zwiesigk, C., Egger, K., and Massicotte, H., "Fundamental Studies for Designing Insulation Panels from Wood Shavings and Filamentous Fungi", BioResources, 14
(3): 5506–5520 (2019).
- [42] Kurt, Ş., "Değişik Tarımsal Artıkların Kayın Mantarı (Pleurotus ostreatus, Pleurotus sajor-caju) Yetiştiriciliğinde Kullanım Olanakları", Doktora Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü
(2008).
- [43] Shah, Z. A., Ashraf, M., and Ishtiaq Ch, M., "No TitleComparative Study on Cultivation and Yield Performance of Oyster Mushroom (Pleurotus ostreatus) on Different Substrates (Wheat Straw,
Leaves, Saw Dust)", Pakistan Journal Of Nutrition, 3 (3): 158–160 (2004).
- [44] Moyson, E. and Verachtert, H., "Growth of higher fungi on wheat straw and their impact on the digestibility of the substrate", Applied Microbiology And Biotechnology, 36 (3): 421–424 (1991).
- [45] Philippousis, A., Diamantopoulou, P., Zervakis, G., and Ioannidou, S., "Potential for the cultivation of exotic mushroom species by exploitation of Mediterranean agricultural wastes.", Science and
Cultivation of Edible Fungi. Proceedings of the 15th International Congress on the Science and Cultivation of Edible Fungi, Maastricht, Netherlands, 523–530 (2000).
- [46] Zervakis, G., Philippoussis, A., Ioannldou, S., and Dlamantopoulou, P., "Mycelium growth kinetics and optimal temperature conditions for the cultivation of edible mushroom species on lignocellulosic substrates", Folia Microbiologica, 46 (3): 231–234 (2001).
- [47] Singh, M. P., "Biodegradation of lignocellulosic wastes through cultivation of Pleurotus sajor-caju", Science and Cultivation of Edible Fungi. Proceedings of the 15th International Congress on the Science and Cultivation of Edible Fungi, Maastricht, Netherlands, 517–521 (2000).
- [48] Singh, A. and Sharma, S., "Composting of a crop residue through treatment with microorganisms and subsequent vermicomposting", Bioresource Technology, 85 (2): 107–111 (2002).
- [49] Tsang, L. J., Reid, I. D., and Coxworth, E. C., "Delignification of Wheat Straw by Pleurotus spp. under Mushroom-Growing Conditions.", Applied And Environmental Microbiology, 53 (6): 1304–6
(1987).
- [50] Zhen, F., Yang, R., and Liu, R., "Effects of Different C:N Ratios in Compost on Nutrient Transformation and on Yield and Quality of Agaricus bisporus", Horticultural Abstracts, 67 (6): 5080 (1995).
- [51] Philippoussis, A., Zervakis, G., and Diamantopoulou, P., "Bioconversion of agricultural lignocellulosic wastes through the cultivation of the edible mushrooms Agrocybe aegerita, Volvariella
volvacea and Pleurotus spp.", World Journal Of Microbiology And Biotechnology, 17 (2): 191–200 (2001).
- [52] Adamović, M., Grubić, G., Milenković, I., Jovanović, R., Protić, R., Sretenović, L., and Stoićević, L., "The biodegradation of wheat straw by Pleurotus ostreatus mushrooms and its use in cattle
feeding", Animal Feed Science And Technology, 71 (3–4): 357–362 (1998).
- [53] Azizi, A., Fazaeli, H., and Jelan, Z. A. ., "The Effect of Growing Pleurotus Fungi on the Chemical Composition and in Vitro Digestibility of Wheat Straw", Proceedings of 99 International Conference
on Agricultural Engineering, Beijing (1999).
- [54] Gaitán-Hernández, R., Esqueda, M., Gutiérrez, A., Sánchez, A., Beltrán-García, M., and Mata, G., "Bioconversion of agrowastes by Lentinula edodes: The high potential of viticulture residues",
Applied Microbiology And Biotechnology, 71 (4): 432–439 (2006).
- [55] Jones, D., Hale, M., and Omed, H., "Cultivation of Oyster Mushrooms (Pleurotus species) to Improve the in Vitro Dry Matter Digestibility of Wheat Straw for Feeding to Ruminants", Proceedings of
the Biritish Society of Animal Science, 174 (2006).
- [56] Kakkar, V. and Dhanda, S., "Comparative evaluation of wheat and paddy straws for mushroom production and feeding residual straws to ruminants", Bioresource Technology, 66 (2): 175–177
(1999).
- [57] Kutlu, H., Özcan, N., Büyükalaca, S., Baykal, L., Görgülü, M., and Öztürkcan, O., "Buğday Samanının Yem değerinin Arttırılmasında Biyoteknolojik Yöntemlerin Kullanılma Olanakları", (1996).
- [58] Manukovsky, N., Kovalev, V., and Gribovskaya, I., "Utilization of Substrate When Growing Oyster Mushroom Pleurotus florida Fovose", Horticultural Abstracts, 69 (8): 7038 (1999).
- [59] Girometta, C., Picco, A. M., Baiguera, R. M., Dondi, D., Babbini, S., Cartabia, M., Pellegrini, M., Savino, E., Girometta, C., Picco, A. M., Baiguera, R. M., Dondi, D., Babbini, S., Cartabia, M., Pellegrini, M., and
Savino, E., "Physico-Mechanical and Thermodynamic Properties of Mycelium-Based Biocomposites: A Review", Sustainability, 11 (1): 281 (2019).
- [60] Iordache, O., Perdum, E., Mitran, E. C., Chivu, A., Dumitrescu, I., Ferdeş, M., and Săndulache, I.-M., "Novel Myco-Copmposite Material Obtained with Fusarium Oxysporum", ICAMS 2018-7 th
International Conference on Advanced Materials and Systems, 111-116 (2018).
- [61] Attias, N., Danai, O., Abitbol, T., Tarazi, E., Ezov, N., Pereman, I., and Grobman, Y. J., "Mycelium bio-composites in industrial design and architecture: Comparative review and experimental analysis",
Journal Of Cleaner Production, 246: 119037 (2020).
- [62] Elsacker, E., Vandelook, S., Brancart, J., Peeters, E., and De Laet, L., "Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic
substrates", PLoS ONE, 14 (7): (2019).
- [63] Islam, M. R., Tudryn, G., Bucinell, R., Schadler, L., and Picu, R. C., "Mechanical behavior of mycelium-based particulate composites", Journal Of Materials Science, 53: 16371–16382 (2018).
- [64] Jones, M., Bhat, T., Wang, C. H., Moinuddin, K., and John, S., "Thermal degradation and fire reaction properties of mycelium composites", Proceedings of the 21st International Conference on
Composite Materials, Xi'an (2017).
- [65] Lokko, M. J., Rowell, M., Dyson, A., and Rempel, A., "Development of Affordable Building Materials Using Agricultural Waste By-Products and Emerging Pith, Soy and Mycelium Biobinders", 32nd
International Conference on Passive and Low Energy Architecture Proceedings, Los Angeles, 881-887 (2016).
- [66] Jones, M., Mautner, A., Luenco, S., Bismarck, A., and John, S., "Engineered mycelium composite construction materials from fungal biorefineries: A critical review", Materials And Design, 187:
108397 (2020).