Research Article
BibTex RIS Cite

Moment-Curvature and Effective Section Stiffness of Reinforced Concrete Beams

Year 2023, , 169 - 177, 27.03.2023
https://doi.org/10.2339/politeknik.945426

Abstract

In determining the seismic performance of reinforced concrete (RC) structures in national and international earthquake regulations, it is desired to use effective section stiffness of the cracked section in RC structural elements during the design phase. Although the effective section stiffness of the cracked section is not constant, it depends on parameters such as the concrete strength and reinforcement ratio. In this study, RC beam models with different concrete strength, tensile and compression reinforcement ratios were designed to investigate nonlinear moment-curvature relationships and effective stiffness coefficients. Analytically investigated parameters were calculated from TBEC (2018), ACI318 (2014), ASCE/SEI41 (2017), Eurocode2 (2004) and Eurocode8 (2004, 2005) regulations and moment-curvature relationships. The effective section stiffness coefficient obtained from the analyses were compared with the effective section stiffness coefficient given for RC members in different regulations. The results obtained at the end were examined by comparing them according to different parameters and models. For constant concrete strength and tensile reinforcement ratio in RC beams, with increasing compression reinforcement ratio, effective stiffness coefficient values increase. In RC beams with constant compression and tensile strength ratio, effective stiffness coefficient values increase with increasing concrete strength. The compression reinforcement ratio has been proved to be effective on the maximum moment bearing capacity of the RC beams, effective flexural stiffness and effective stiffness coefficient and ductility of the sections.

Supporting Institution

-

Project Number

-

Thanks

The authors thank the reviewers who evaluated the article for their time and valuable comments and suggestions.

References

  • [1] Sakcali G.B., Yüksel İ., “An Artificial Neural Network Model for Moment-Curvature Relationship of RC Columns Subjected to Biaxial Bending”, Politeknik Dergisi, Erken Görünüm, (2021).
  • [2] Pique J.R., Burgos M., “Effective Rigidity of Reinforced Concrete Elements in Seismic Analysis and Design”, The 14th World Conference on Earthquake Engineering, 12-17 October, China, (2008).
  • [3] Çağlar N., Demir A., Ozturk H., Akkaya A., “A new approach to determine the moment-curvature relationship of circular reinforced concrete columns”, Computers and Concrete, 15(3), 321-335, (2015).
  • [4] Gentile R., Raffaele D., “Simplified analytical Moment-Curvature relationship for hollow circular RC cross-sections”, Earthquakes and Structures, 15(4), 419-429, (2018).
  • [5] Bouzid H., Kassoul A., “Curvature ductility prediction of high strength concrete beams”, Structural Engineering and Mechanics, 66(2), 195-201, (2018).
  • [6] Vidović D., Grandić D., Šćulac P., “Effective Stiffness for Structural Analysis of Buildings in Earthquake,” 4th International Conference Civil Engineering-Science and Practice, Žabljak; 811-818, 20-24 February (2012).
  • [7] Avşar Ö., Bayhan B., Yakut A., “Effective flexural rigidities for ordinary reinforced concrete columns and beams,” The Structural Design of Tall and Special Buildings, 23, 463-482, (2014).
  • [8] Paulay T., Priestley M.J.N., “Seismic Design of Reinforced Concrete and Masonry Buildings”, John Wiley & Sons: New York, (1992).
  • [9] Mehanny S.S.F., Kuramoto H., Deierlein G.G., “Stiffness modeling of RC beam-columns for frame analysis”, ACI Structural Journal, 98(2), 215-225, (2001).
  • [10] Panagiotakos T.B., Fardis M.N., “Deformations of reinforced concrete members at yielding and ultimate”, ACI Structural Journal, 98(2), 135-148, (2001).
  • [11] Kumar R., Singh Y., “Stiffness of reinforced concrete frame members for seismic analysis”, ACI Structural Journal, 107(5), 607-615, (2010).
  • [12] Pan Z., Li B., Lu Z., “Effective shear stiffness of diagonally cracked RC beams”, Engineering Structure, 59, 95-103, (2014).
  • [13] Micelli F., Candido L., Leone M., Maria A.A., “Effective stiffness in regular R/C frames subjected to seismic loads”, Earthquakes and Structures, 9(3), 481-501, (2015).
  • [14] TBEC, Turkish Building Earthquake Code, Specification for Buildings to be Built in Seismic Zones, Ministry of Public Works and Settlement Government of the Republic of Turkey, (2018).
  • [15] ACI318., “Building Code Requirements for Reinforced Concrete”, American Concrete Institute Committee, ISBN: 978-0-87031-930-3. (2014).
  • [16] ASCE Standard 41, “Seismic Evaluation and Retrofit of Existing Buildings”, (ASCE/SEI 41-17), Published by The American Society of Civil Engineers, Reston, Virginia, p. 20191-4382, USA, (2017).
  • [17] Eurocode 2, “Design of concrete structures: Part 1-1: General rules and rules for buildings”, BS EN 1992-1-1: (2004).
  • [18] Eurocode 8, “Design of structures for earthquake resistance: Part 1: General rules”, seismic actions and rules for buildings, BS EN 1998-1: (2004).
  • [19] Eurocode 8, CEN, “Design of structures for earthquake resistance: Part 3: Assessment and retrofitting of buildings”, BS EN 1998-3; (2005).
  • [20] SAP2000, Structural Software for Analysis and Design, Computers and Structures, Inc, USA.
  • [21] Yüksel S., Jamal R., Foroughi S., “Effect of Compression Reinforcement Ratio of Beams on the Moment Curvature Relationships”, Konya Journal of Engineering Sciences, 8(1), 1-17, (2020).
  • [22] TS500, “Requirements for Design and Construction of Reinforced Concrete Structures”, Turkish Standards Institute, Ankara, Turkey, (2000).

Betonarme Kirişlerin Moment-Eğrilik ve Etkin Kesit Rijitlkleri

Year 2023, , 169 - 177, 27.03.2023
https://doi.org/10.2339/politeknik.945426

Abstract

Ulusal ve uluslararası deprem yönetmeliklerinde betonarme yapıların sismik performansının belirlenmesinde, tasarım aşamasında betonarme yapı elemanlarında çatlamış kesite ait etkin kesit rijitliğinin kullanılması istenmektedir. Çatlamış kesitin etkin kesit rijitliği sabit olmamakla birlikte beton dayanımı ve donatı oranı gibi parametrelere bağlıdır. Bu çalışmada, doğrusal olmayan moment-eğrilik ilişkileri ve etkin rijitlik katsayılarını araştırmak için farklı beton dayanımı, çekme ve basınç donatı oranlarına sahip betonarme kiriş modelleri tasarlanmıştır. Analitik olarak incelenen parametreler TBEC (2018), ACI318 (2014), ASCE/SEI41 (2017), Eurocode2 (2004) ve Eurocode8 (2004, 2005) yönetmeliklerinden ve moment-eğrilik ilişkilerinden hesaplanmıştır. Sonunda elde edilen etkin rijitlik katsayısı, farklı yönetmeliklerde betonarme elemanlar için öngörülen rijitlik katsayısı ile karşılaştırılmıştır. Elde edilen sonuçlar farklı parametre ve modellere göre karşılaştırılarak incelenmiştir. Betonarme kirişlerde sabit çekme donatı oranı ve beton dayanımı için, basınç donatı oranının artması ile etkin rijitlik katsayısı değerleri artar. Sabit çekme ve basınç donatı oranına sahip betonarme kirişlerde beton dayanımı arttıkça etkin rijitlik katsayı değerleri de artmaktadır. Basınç donatı oranının betonarme kirişlerin maksimum moment taşıma kapasitesi, etkin eğilme rijitliği ve etkin rijitlik katsayısı ve kesitlerin sünekliği üzerinde etkili olduğu kanıtlanmıştır.

Project Number

-

References

  • [1] Sakcali G.B., Yüksel İ., “An Artificial Neural Network Model for Moment-Curvature Relationship of RC Columns Subjected to Biaxial Bending”, Politeknik Dergisi, Erken Görünüm, (2021).
  • [2] Pique J.R., Burgos M., “Effective Rigidity of Reinforced Concrete Elements in Seismic Analysis and Design”, The 14th World Conference on Earthquake Engineering, 12-17 October, China, (2008).
  • [3] Çağlar N., Demir A., Ozturk H., Akkaya A., “A new approach to determine the moment-curvature relationship of circular reinforced concrete columns”, Computers and Concrete, 15(3), 321-335, (2015).
  • [4] Gentile R., Raffaele D., “Simplified analytical Moment-Curvature relationship for hollow circular RC cross-sections”, Earthquakes and Structures, 15(4), 419-429, (2018).
  • [5] Bouzid H., Kassoul A., “Curvature ductility prediction of high strength concrete beams”, Structural Engineering and Mechanics, 66(2), 195-201, (2018).
  • [6] Vidović D., Grandić D., Šćulac P., “Effective Stiffness for Structural Analysis of Buildings in Earthquake,” 4th International Conference Civil Engineering-Science and Practice, Žabljak; 811-818, 20-24 February (2012).
  • [7] Avşar Ö., Bayhan B., Yakut A., “Effective flexural rigidities for ordinary reinforced concrete columns and beams,” The Structural Design of Tall and Special Buildings, 23, 463-482, (2014).
  • [8] Paulay T., Priestley M.J.N., “Seismic Design of Reinforced Concrete and Masonry Buildings”, John Wiley & Sons: New York, (1992).
  • [9] Mehanny S.S.F., Kuramoto H., Deierlein G.G., “Stiffness modeling of RC beam-columns for frame analysis”, ACI Structural Journal, 98(2), 215-225, (2001).
  • [10] Panagiotakos T.B., Fardis M.N., “Deformations of reinforced concrete members at yielding and ultimate”, ACI Structural Journal, 98(2), 135-148, (2001).
  • [11] Kumar R., Singh Y., “Stiffness of reinforced concrete frame members for seismic analysis”, ACI Structural Journal, 107(5), 607-615, (2010).
  • [12] Pan Z., Li B., Lu Z., “Effective shear stiffness of diagonally cracked RC beams”, Engineering Structure, 59, 95-103, (2014).
  • [13] Micelli F., Candido L., Leone M., Maria A.A., “Effective stiffness in regular R/C frames subjected to seismic loads”, Earthquakes and Structures, 9(3), 481-501, (2015).
  • [14] TBEC, Turkish Building Earthquake Code, Specification for Buildings to be Built in Seismic Zones, Ministry of Public Works and Settlement Government of the Republic of Turkey, (2018).
  • [15] ACI318., “Building Code Requirements for Reinforced Concrete”, American Concrete Institute Committee, ISBN: 978-0-87031-930-3. (2014).
  • [16] ASCE Standard 41, “Seismic Evaluation and Retrofit of Existing Buildings”, (ASCE/SEI 41-17), Published by The American Society of Civil Engineers, Reston, Virginia, p. 20191-4382, USA, (2017).
  • [17] Eurocode 2, “Design of concrete structures: Part 1-1: General rules and rules for buildings”, BS EN 1992-1-1: (2004).
  • [18] Eurocode 8, “Design of structures for earthquake resistance: Part 1: General rules”, seismic actions and rules for buildings, BS EN 1998-1: (2004).
  • [19] Eurocode 8, CEN, “Design of structures for earthquake resistance: Part 3: Assessment and retrofitting of buildings”, BS EN 1998-3; (2005).
  • [20] SAP2000, Structural Software for Analysis and Design, Computers and Structures, Inc, USA.
  • [21] Yüksel S., Jamal R., Foroughi S., “Effect of Compression Reinforcement Ratio of Beams on the Moment Curvature Relationships”, Konya Journal of Engineering Sciences, 8(1), 1-17, (2020).
  • [22] TS500, “Requirements for Design and Construction of Reinforced Concrete Structures”, Turkish Standards Institute, Ankara, Turkey, (2000).
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Saeid Foroughi 0000-0002-7556-2118

Bahadır Yüksel 0000-0002-4175-1156

Project Number -
Publication Date March 27, 2023
Submission Date May 31, 2021
Published in Issue Year 2023

Cite

APA Foroughi, S., & Yüksel, B. (2023). Moment-Curvature and Effective Section Stiffness of Reinforced Concrete Beams. Politeknik Dergisi, 26(1), 169-177. https://doi.org/10.2339/politeknik.945426
AMA Foroughi S, Yüksel B. Moment-Curvature and Effective Section Stiffness of Reinforced Concrete Beams. Politeknik Dergisi. March 2023;26(1):169-177. doi:10.2339/politeknik.945426
Chicago Foroughi, Saeid, and Bahadır Yüksel. “Moment-Curvature and Effective Section Stiffness of Reinforced Concrete Beams”. Politeknik Dergisi 26, no. 1 (March 2023): 169-77. https://doi.org/10.2339/politeknik.945426.
EndNote Foroughi S, Yüksel B (March 1, 2023) Moment-Curvature and Effective Section Stiffness of Reinforced Concrete Beams. Politeknik Dergisi 26 1 169–177.
IEEE S. Foroughi and B. Yüksel, “Moment-Curvature and Effective Section Stiffness of Reinforced Concrete Beams”, Politeknik Dergisi, vol. 26, no. 1, pp. 169–177, 2023, doi: 10.2339/politeknik.945426.
ISNAD Foroughi, Saeid - Yüksel, Bahadır. “Moment-Curvature and Effective Section Stiffness of Reinforced Concrete Beams”. Politeknik Dergisi 26/1 (March 2023), 169-177. https://doi.org/10.2339/politeknik.945426.
JAMA Foroughi S, Yüksel B. Moment-Curvature and Effective Section Stiffness of Reinforced Concrete Beams. Politeknik Dergisi. 2023;26:169–177.
MLA Foroughi, Saeid and Bahadır Yüksel. “Moment-Curvature and Effective Section Stiffness of Reinforced Concrete Beams”. Politeknik Dergisi, vol. 26, no. 1, 2023, pp. 169-77, doi:10.2339/politeknik.945426.
Vancouver Foroughi S, Yüksel B. Moment-Curvature and Effective Section Stiffness of Reinforced Concrete Beams. Politeknik Dergisi. 2023;26(1):169-77.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.