Research Article
BibTex RIS Cite

UHMWPE/Al2O3-HAp Hibrit Kompozitlerin Üretimi ve Karakterizasyonu

Year 2022, , 887 - 894, 01.06.2022
https://doi.org/10.2339/politeknik.997061

Abstract

Total Kalça Protezi, kalça ekleminin fonksiyonunu görmediği durumlarda kullanılan ve kalça ekleminin yerini alan, vücuda uyumlu malzemelerden yapılmış implantlardır. Kalça protezlerinde görülen en yaygın hasar, asetabular yuva ve liner parçalarında hareket sırasında zamanla meydana gelen aşınmadan kaynaklanmaktadır. Total kalça protezlerinde en yaygın kullanılan malzeme çifti metalik femur başı üzerine yüksek molekül ağırlıklı polietilen (UHMWPE) yuva ve linerdır. Mevcut çalışmada total kalça protez implantlarının yuva ve liner parçalarının sürtünme ve aşınma dayanımlarının arttırılması hedeflenmiştir. Bu amaçla UHMWPE’e ağırlıkça % 1 , 2 ve 3 oranında biyouyumlu, doğal kemik ile benzer yapıda olan Hidroksiapatit (HAp) tozu ve biyouyumlu, aşınmaya karşı dayanıklı Al2O3 tozu ilave edilmiştir. Santrifüj metodu ile karıştırılan toz karışımları 20mm çapındaki silindirik bir kalıp içerisinde 200°C’ de 1 saat sıcak preslenmiştir. Numunelerin kırık yüzey SEM incelemeleri, takviye elemanlarının UHMWPE matris içerisinde homojen olarak dağıldığını göstermiştir. Takviye elemanlarının varlığı, SEM-EDS ve XRD analizi ile ispatlanmıştır. Kompozitlerin sertlik değerlerinin takviye elemanlarının ilavesi ile 40 MPa dan 66,6 MPa değerine arttığı gözlenmiştir. Kompozit numunelerin ergime sıcaklığının yaklaşık 140 °C olduğu DSC analizi ile belirlenmiştir.

References

  • [1] L. S. Nair and C. T. Laurencin, “Biodegradable polymers as biomaterials,” Progress in Polymer Science, 32: 762–798, (2007).
  • [2] S. Ramakrishna, J. Mayer, E. Wintermantel, and K. W. Leong, “Biomedical applications of polymer-composite materials : a review,” 61, (2001).
  • [3] T. Dergisi et al., “Türk Ortopedi ve Travmatoloji Birliği Derneği İmplant dayanımı Implant permanence,” TOTBİD Dergisi, 10: 122–128, (2011).
  • [4] A. Of and T. H. E. Hip, “Artificial Total Hip Replacement,” 4:253–254, (1976).
  • [5] S. Ghosh and S. Abanteriba, “Status of surface modification techniques for artificial hip implants,” Science and Technology of Advanced Materials, 17: 715–735, (2016).
  • [6] M. Haneef, J. F. Rahman, M. Yunus, S. Zameer, and P. T. Yezdani, “Hybrid Polymer Matrix Composites for Biomedical Applications,” 3(2):970–979, (2013).
  • [7] N. Analysis, M. Coating, W. Properties, H. Prosthesis, and F. E. Method, “Kalça Protezinin A şınma Özellikleri Ü zerinde Çoklu Tabakalı Kaplanmasının Etkilerinin Sonlu Elemanlar Metoduyla N ümerik Analizi,” Ordu University Journal of Science and Technology, 7(2):201–214, (2017).
  • [8] M. Salari, S. Mohseni Taromsari, R. Bagheri, and M. A. Faghihi Sani, “Improved wear, mechanical, and biological behavior of UHMWPE-HAp-zirconia hybrid nanocomposites with a prospective application in total hip joint replacement,” Journal of Materials Science, 54(5): 4259–4276, (2019).
  • [9] R. Khanna et al., “Novel artificial hip joint: A layer of alumina on Ti-6Al-4V alloy formed by micro-arc oxidation,” Materials Science and Engineering C, 55:393–400, (2015).
  • [10] R. Simona, H. Frantisek, C. Michal, S. Lukas, and H. Branislav, “Analysis of Piezoelectric Materials for Implantable Devices,” Instrumentation of an icing wind tunnel based pn sae standarts Reinhard, 21(1):2–7, (2013).
  • [11] S. M. Kurtz and D. Ph, “The Required Mechanical Properties of Hip and Knee Components.”
  • [12] D. Klaffke, M. Griepentrog, U. Gross, I. Kranz, and C. Knabe, “Potential of Wear Resistant Coatings on Ti – 6Al – 4V for Artificial Hip Joint Bearing Surfaces,” 264:505–517, (2008). [13] M. D. Ries, “Oxidized Zirconium in Total Joint Arthroplasty,” 6–9, (2006).
  • [14] J. L. Tipper et al., “Characterisation of wear debris from UHMWPE on zirconia ceramic , metal-on-metal and alumina ceramic-on-ceramic hip prostheses generated in a physiological anatomical hip joint simulator,” 250:120–128, (2001).
  • [15] Q. Wang, J. Liu, and S. Ge, “Study on Biotribological Behavior of the Combined Joint of CoCrMo and UHMWPE / BHA Composite in a Hip Joint Simulator,” Journal of Bionic Engineering, 6(4):378–386, (2009).
  • [16] K. Gong et al., “The mechanical and tribological properties of UHMWPE loaded ALN after mechanical activation for joint replacements,” Journal of the Mechanical Behavior of Biomedical Materials, 61:334–344, (2016).
  • [17] K. Chen, D. Zhang, X. Cui, and Q. Wang, “Preparation of ultrahigh-molecular-weight polyethylene grafted with polyvinyl alcohol hydrogel as an artificial joint,” RSC Advances, 31(5):24215–24223, (2015).
  • [18] S. Ge, X. Kang, and Y. Zhao, “One-year biodegradation study of UHMWPE as artificial joint materials : Variation of chemical structure and effect on friction and wear behavior,” Wear, 271(9): 2354–2363, (2011).
  • [19] D. T. E. T. I. K. Robert, J. Galante, and R. Presby-, “A Wear Resistant Material for Total Joint Replacement-Tissue Biocompatibility of an Ultra-High Molecular Weight ( UHMW ), Polyethylene-Graphite Composite,” 8: 231–250, (1974).
  • [20] S. M. Kurtz, The UHMWPE Handbook. Elsevier, (2004).
  • [21] W. He and R. Benson, "10 Polymeric Biomaterials". Elsevier, (2011).
  • [22] M. Minn and S. K. Sinha, “DLC and UHMWPE as hard / soft composite film on Si for improved tribological performance,” 202:3698–3708, (2008).
  • [23] A. Valenza, A. M. Visco, L. Torrisi, and N. Campo, “Characterization of ultra-high-molecular-weight polyethylene ( UHMWPE ) modified by ion implantation,” Polymer, 45:1707–1715, (2004).
  • [24] B.-P. Chang, H. Md. Akil, and R. Bt. Md. Nasir, “Comparative study of micro- and nano-ZnO reinforced UHMWPE composites under dry sliding wear,” Wear, 297(1–2):1120–1127, (2013).
  • [25] M. Rein, L. Vaykhansky, Q. Elsevier, and S. Limited, “A novel composite based on Ultra high-,” Composites Part B: Engineering, 538(96): 1149–1154, (1997).
  • [26] J. LIU, Y. ZHU, Q. WANG, and S. GE, “Biotribological behavior of ultra high molecular weight polyethylene composites containing bovine bone hydroxyapatite,” Journal of China University of Mining and Technology, 18(4):606–612, (2008).
  • [27] W. Pang, Z. Ni, G. Chen, G. Huang, H. Huang, and Y. Zhao, “Mechanical and thermal properties of graphene oxide/ultrahigh molecular weight polyethylene nanocomposites,” RSC Advances, vol. 77(5):63063–63072, (2015).
  • [28] T. Aoike, D. Yokoyama, H. Uehara, T. Yamanobe, and T. Komoto, “Tribology of ultra-high molecular weight polyethylene disks molded at different temperatures,” 262:742–748, (2007).
  • [29] G. Guofang, Y. Huayong, and F. Xin, “Tribological Properties Of Kaolin Filled UHMWPE Composites in Unlubricated Sliding ,” 256:88–94, (2004).
  • [30] L. Fang, Y. Leng, and P. Gao, “Processing of Hydroxyapatite Reinforced Ultrahigh Molecular Weight Polyethylene for Biomedical Applications,” 26: 3471–3478, (2005).
  • [31] J. Tong, Y. Ma, and M. Jiang, “Effects of the Wollastonite Fiber Modification On The Sliding Wear Behavior of the UHMWPE Composites,” 255: 734–741, (2003).
  • [32] D. L. P. Macuvele et al., “Advances in ultra high molecular weight polyethylene/hydroxyapatite composites for biomedical applications: A brief review,” Materials Science and Engineering C, 76:1248–1262, (2017).
  • [33] G. Weedon, C. Weber Jr., and K. Harding, “NIH Public Access Author Manuscript J Mech Behav Biomed Mater. Ultra High Molec, 2(5): 433–443,(2008).
  • [34] A. J. Nathanael, J. Hee, D. Mangalaraj, S. I. Hong, and Y. H. Rhee, “Multifunctional properties of hydroxyapatite / titania bio-nano-composites : bioactivity and antimicrobial studies,” Powder Technology, 228:410–415, (2012).
  • [35] L. Xu et al., “Preparation, tribological properties and biocompatibility of fluorinated graphene/ultrahigh molecular weight polyethylene composite materials,” Applied Surface Science, 370:201–208, (2016).
  • [36] G. Sui, W. H. Zhong, X. Ren, X. Q. Wang, and X. P. Yang, “Structure , Mechanical Properties and Friction Behavior of UHMWPE / HDPE / Carbon Nanofibers,” 115:404–412, (2009).
  • [37] K. Balani, V. Verma, A. Agarwal, and R. Narayan, Biosurfaces: Amaterials Science and Engineering Perspective, 1st ed. Wiley, (2014).
  • [38] B. Peng Chang, H. Md Akil, R. Bt Nasir, and A. Khan, “Optimization on wear performance of UHMWPE composites using response surface methodology,” Tribology International, 88:252–262, (2015).
  • [39] X. L. Xie, C. Y. Tang, K. Y. Y. Chan, X. C. Wu, C. P. Tsui, and C. Y. Cheung, “Wear performance of Ultrahigh Molecular Weight Polyethylene / Quartz Composites,” 24:1889–1896, (2003).

Production and Characterization of UHMWPE- Al2O3-HAp Hybride Composites

Year 2022, , 887 - 894, 01.06.2022
https://doi.org/10.2339/politeknik.997061

Abstract

Total Hip Replacement is implants made of body-compatible materials that are used in cases where the hip joint does not function and replaces the hip joint. The most common damage seen in hip prostheses is due to wear on the acetabular socket and liner parts during movement over time. The most common pair of materials used in total hip replacements is a high molecular weight polyethylene (UHMWPE) socket and liner on the metallic femoral head. In the current study, it was aimed to increase the friction and wear resistance of the socket and liner parts of total hip prosthesis implants. For this purpose, 1, 2 and 3% by weight of biocompatible Hydroxyapatite (HAp) powder, which has a similar structure to natural bone, and biocompatible, wear-resistant Al2O3 were added to UHMWPE. Powder mixtures mixed by centrifugation method were hot pressed at 200°C for 1 hour in a cylindrical mold with a diameter of 20mm. Fractured surface SEM investigations showed that the reinforcement elements were homogeneously dispersed in the UHMWPE matrix. The presence of reinforcement elements has been proven by SEM-EDS and XRD analysis. It was observed that the hardness values of the composites increased from 40 MPa to 66.6 MPa with the addition of reinforcement elements. It was determined by DSC analysis that the melting temperature of the composite samples was approximately 140 °C.

References

  • [1] L. S. Nair and C. T. Laurencin, “Biodegradable polymers as biomaterials,” Progress in Polymer Science, 32: 762–798, (2007).
  • [2] S. Ramakrishna, J. Mayer, E. Wintermantel, and K. W. Leong, “Biomedical applications of polymer-composite materials : a review,” 61, (2001).
  • [3] T. Dergisi et al., “Türk Ortopedi ve Travmatoloji Birliği Derneği İmplant dayanımı Implant permanence,” TOTBİD Dergisi, 10: 122–128, (2011).
  • [4] A. Of and T. H. E. Hip, “Artificial Total Hip Replacement,” 4:253–254, (1976).
  • [5] S. Ghosh and S. Abanteriba, “Status of surface modification techniques for artificial hip implants,” Science and Technology of Advanced Materials, 17: 715–735, (2016).
  • [6] M. Haneef, J. F. Rahman, M. Yunus, S. Zameer, and P. T. Yezdani, “Hybrid Polymer Matrix Composites for Biomedical Applications,” 3(2):970–979, (2013).
  • [7] N. Analysis, M. Coating, W. Properties, H. Prosthesis, and F. E. Method, “Kalça Protezinin A şınma Özellikleri Ü zerinde Çoklu Tabakalı Kaplanmasının Etkilerinin Sonlu Elemanlar Metoduyla N ümerik Analizi,” Ordu University Journal of Science and Technology, 7(2):201–214, (2017).
  • [8] M. Salari, S. Mohseni Taromsari, R. Bagheri, and M. A. Faghihi Sani, “Improved wear, mechanical, and biological behavior of UHMWPE-HAp-zirconia hybrid nanocomposites with a prospective application in total hip joint replacement,” Journal of Materials Science, 54(5): 4259–4276, (2019).
  • [9] R. Khanna et al., “Novel artificial hip joint: A layer of alumina on Ti-6Al-4V alloy formed by micro-arc oxidation,” Materials Science and Engineering C, 55:393–400, (2015).
  • [10] R. Simona, H. Frantisek, C. Michal, S. Lukas, and H. Branislav, “Analysis of Piezoelectric Materials for Implantable Devices,” Instrumentation of an icing wind tunnel based pn sae standarts Reinhard, 21(1):2–7, (2013).
  • [11] S. M. Kurtz and D. Ph, “The Required Mechanical Properties of Hip and Knee Components.”
  • [12] D. Klaffke, M. Griepentrog, U. Gross, I. Kranz, and C. Knabe, “Potential of Wear Resistant Coatings on Ti – 6Al – 4V for Artificial Hip Joint Bearing Surfaces,” 264:505–517, (2008). [13] M. D. Ries, “Oxidized Zirconium in Total Joint Arthroplasty,” 6–9, (2006).
  • [14] J. L. Tipper et al., “Characterisation of wear debris from UHMWPE on zirconia ceramic , metal-on-metal and alumina ceramic-on-ceramic hip prostheses generated in a physiological anatomical hip joint simulator,” 250:120–128, (2001).
  • [15] Q. Wang, J. Liu, and S. Ge, “Study on Biotribological Behavior of the Combined Joint of CoCrMo and UHMWPE / BHA Composite in a Hip Joint Simulator,” Journal of Bionic Engineering, 6(4):378–386, (2009).
  • [16] K. Gong et al., “The mechanical and tribological properties of UHMWPE loaded ALN after mechanical activation for joint replacements,” Journal of the Mechanical Behavior of Biomedical Materials, 61:334–344, (2016).
  • [17] K. Chen, D. Zhang, X. Cui, and Q. Wang, “Preparation of ultrahigh-molecular-weight polyethylene grafted with polyvinyl alcohol hydrogel as an artificial joint,” RSC Advances, 31(5):24215–24223, (2015).
  • [18] S. Ge, X. Kang, and Y. Zhao, “One-year biodegradation study of UHMWPE as artificial joint materials : Variation of chemical structure and effect on friction and wear behavior,” Wear, 271(9): 2354–2363, (2011).
  • [19] D. T. E. T. I. K. Robert, J. Galante, and R. Presby-, “A Wear Resistant Material for Total Joint Replacement-Tissue Biocompatibility of an Ultra-High Molecular Weight ( UHMW ), Polyethylene-Graphite Composite,” 8: 231–250, (1974).
  • [20] S. M. Kurtz, The UHMWPE Handbook. Elsevier, (2004).
  • [21] W. He and R. Benson, "10 Polymeric Biomaterials". Elsevier, (2011).
  • [22] M. Minn and S. K. Sinha, “DLC and UHMWPE as hard / soft composite film on Si for improved tribological performance,” 202:3698–3708, (2008).
  • [23] A. Valenza, A. M. Visco, L. Torrisi, and N. Campo, “Characterization of ultra-high-molecular-weight polyethylene ( UHMWPE ) modified by ion implantation,” Polymer, 45:1707–1715, (2004).
  • [24] B.-P. Chang, H. Md. Akil, and R. Bt. Md. Nasir, “Comparative study of micro- and nano-ZnO reinforced UHMWPE composites under dry sliding wear,” Wear, 297(1–2):1120–1127, (2013).
  • [25] M. Rein, L. Vaykhansky, Q. Elsevier, and S. Limited, “A novel composite based on Ultra high-,” Composites Part B: Engineering, 538(96): 1149–1154, (1997).
  • [26] J. LIU, Y. ZHU, Q. WANG, and S. GE, “Biotribological behavior of ultra high molecular weight polyethylene composites containing bovine bone hydroxyapatite,” Journal of China University of Mining and Technology, 18(4):606–612, (2008).
  • [27] W. Pang, Z. Ni, G. Chen, G. Huang, H. Huang, and Y. Zhao, “Mechanical and thermal properties of graphene oxide/ultrahigh molecular weight polyethylene nanocomposites,” RSC Advances, vol. 77(5):63063–63072, (2015).
  • [28] T. Aoike, D. Yokoyama, H. Uehara, T. Yamanobe, and T. Komoto, “Tribology of ultra-high molecular weight polyethylene disks molded at different temperatures,” 262:742–748, (2007).
  • [29] G. Guofang, Y. Huayong, and F. Xin, “Tribological Properties Of Kaolin Filled UHMWPE Composites in Unlubricated Sliding ,” 256:88–94, (2004).
  • [30] L. Fang, Y. Leng, and P. Gao, “Processing of Hydroxyapatite Reinforced Ultrahigh Molecular Weight Polyethylene for Biomedical Applications,” 26: 3471–3478, (2005).
  • [31] J. Tong, Y. Ma, and M. Jiang, “Effects of the Wollastonite Fiber Modification On The Sliding Wear Behavior of the UHMWPE Composites,” 255: 734–741, (2003).
  • [32] D. L. P. Macuvele et al., “Advances in ultra high molecular weight polyethylene/hydroxyapatite composites for biomedical applications: A brief review,” Materials Science and Engineering C, 76:1248–1262, (2017).
  • [33] G. Weedon, C. Weber Jr., and K. Harding, “NIH Public Access Author Manuscript J Mech Behav Biomed Mater. Ultra High Molec, 2(5): 433–443,(2008).
  • [34] A. J. Nathanael, J. Hee, D. Mangalaraj, S. I. Hong, and Y. H. Rhee, “Multifunctional properties of hydroxyapatite / titania bio-nano-composites : bioactivity and antimicrobial studies,” Powder Technology, 228:410–415, (2012).
  • [35] L. Xu et al., “Preparation, tribological properties and biocompatibility of fluorinated graphene/ultrahigh molecular weight polyethylene composite materials,” Applied Surface Science, 370:201–208, (2016).
  • [36] G. Sui, W. H. Zhong, X. Ren, X. Q. Wang, and X. P. Yang, “Structure , Mechanical Properties and Friction Behavior of UHMWPE / HDPE / Carbon Nanofibers,” 115:404–412, (2009).
  • [37] K. Balani, V. Verma, A. Agarwal, and R. Narayan, Biosurfaces: Amaterials Science and Engineering Perspective, 1st ed. Wiley, (2014).
  • [38] B. Peng Chang, H. Md Akil, R. Bt Nasir, and A. Khan, “Optimization on wear performance of UHMWPE composites using response surface methodology,” Tribology International, 88:252–262, (2015).
  • [39] X. L. Xie, C. Y. Tang, K. Y. Y. Chan, X. C. Wu, C. P. Tsui, and C. Y. Cheung, “Wear performance of Ultrahigh Molecular Weight Polyethylene / Quartz Composites,” 24:1889–1896, (2003).
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Gözde Efe 0000-0003-3912-6105

Tuba Yener 0000-0002-2908-8507

Publication Date June 1, 2022
Submission Date September 17, 2021
Published in Issue Year 2022

Cite

APA Efe, G., & Yener, T. (2022). UHMWPE/Al2O3-HAp Hibrit Kompozitlerin Üretimi ve Karakterizasyonu. Politeknik Dergisi, 25(2), 887-894. https://doi.org/10.2339/politeknik.997061
AMA Efe G, Yener T. UHMWPE/Al2O3-HAp Hibrit Kompozitlerin Üretimi ve Karakterizasyonu. Politeknik Dergisi. June 2022;25(2):887-894. doi:10.2339/politeknik.997061
Chicago Efe, Gözde, and Tuba Yener. “UHMWPE/Al2O3-HAp Hibrit Kompozitlerin Üretimi Ve Karakterizasyonu”. Politeknik Dergisi 25, no. 2 (June 2022): 887-94. https://doi.org/10.2339/politeknik.997061.
EndNote Efe G, Yener T (June 1, 2022) UHMWPE/Al2O3-HAp Hibrit Kompozitlerin Üretimi ve Karakterizasyonu. Politeknik Dergisi 25 2 887–894.
IEEE G. Efe and T. Yener, “UHMWPE/Al2O3-HAp Hibrit Kompozitlerin Üretimi ve Karakterizasyonu”, Politeknik Dergisi, vol. 25, no. 2, pp. 887–894, 2022, doi: 10.2339/politeknik.997061.
ISNAD Efe, Gözde - Yener, Tuba. “UHMWPE/Al2O3-HAp Hibrit Kompozitlerin Üretimi Ve Karakterizasyonu”. Politeknik Dergisi 25/2 (June 2022), 887-894. https://doi.org/10.2339/politeknik.997061.
JAMA Efe G, Yener T. UHMWPE/Al2O3-HAp Hibrit Kompozitlerin Üretimi ve Karakterizasyonu. Politeknik Dergisi. 2022;25:887–894.
MLA Efe, Gözde and Tuba Yener. “UHMWPE/Al2O3-HAp Hibrit Kompozitlerin Üretimi Ve Karakterizasyonu”. Politeknik Dergisi, vol. 25, no. 2, 2022, pp. 887-94, doi:10.2339/politeknik.997061.
Vancouver Efe G, Yener T. UHMWPE/Al2O3-HAp Hibrit Kompozitlerin Üretimi ve Karakterizasyonu. Politeknik Dergisi. 2022;25(2):887-94.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.