Research Article
BibTex RIS Cite

Karbon Nanotüp-Polimer Nanokompozitlerde Çok Boyutlu Modelleme ile Arayüz Özelliklerinin İncelenmesi

Year 2017, Volume: 20 Issue: 3, 503 - 511, 15.09.2017

Abstract

Bu çalışmada, karbon nanotüp (KNT) takviyeli nanolif
üretiminde başarılı sonuçlar veren polistiren-ko-glisidil metakrilat
P(St-ko-GMA) ve polivinil bütral (PVB) gibi iki farklı polimer sisteminde
polimer-karbon nanotüp ilişkisi çok boyutlu modelleme ile moleküler düzeyde
incelenmiştir. Sıklıkla takviye elemanı olarak kullanılan KNT’lerin iki farklı
boyut mertebesinde veri aktarımına izin verecek şekilde, önce dağınık partikül
dinamiği (DPD) ardından, geri-haritalama ile sağlanan atom detayı esas alınarak
moleküler dinamik (MD) hesaplama yöntemleri ile çok-boyutlu modellenmesi
sağlanmıştır. KNT takviyesinin arayüz yapısına, matris mekanik özelliklerine ve
camsı geçiş sıcaklığına olan etkisi iki farklı polimer sisteminde
karşılaştırmalı olarak incelenmiştir. Yapısında aromatik grup bulunan P(St-ko-GMA) polimerlerinin KNT ile π-π
etkileşimine girebildiği ve bu çekici etkileşiminin camsı geçiş sıcaklığı ve
mekanik özelliklerin artmasına sebep olduğu görülmüştür. PVB sistemlerinde ise
mekanik artış KNT’lerin kendi mukavim yapısı ile sınırlı kalmıştır.  

References

  • 1. Schandler L. S., Brinson L. C. and Sawyer W. G., "Polymer nanocomposites: a small part of the story", JOM, 59(3): 53-60, (2007).
  • 2. Beese A. M., Sarkar S., Nair A., Naraghi M., An Z., Moravsky A., Loutfy R. O., Buehler M. J., Nguyen S. T. and Espinosa H. D., "Bio-Inspired carbon nanotube-polymer composite yarns with hydrogen bond-mediated lateral ınteractions", ACS Nano, 7(4): 3434-3446, (2013).
  • 3. Es'haghi Z., Golsefidi M. A., Saify A., Tanha A. A., Rezaeifar Z. and Alian-Nezhadi Z., "Carbon nanotube reinforced hollow fiber solid/liquid phase microextraction: a novel extraction technique for the measurement of caffeic acid in echinacea purpurea herbal extracts combined with high-performance liquid chromatography", Journal of Chromatography A, 1217(17): 2768-2775, (2010).
  • 4. Fu S.-Y., Feng X.-Q., Lauke B. and Mai Y.-W., "Effects of particle size, particle/matrix ınterface adhesion and particle loading on mechanical properties of particulate-polymer composites", Composites Part B-Engineering, 39(6): 933-961, (2008).
  • 5. Imaizumi S., Matsumoto H., Konosu Y., Tsuboi K., Minagawa M., Tanioka A., Koziol K. and Windle A., "Top-down process based on electrospinning, twisting, and heating for producing one-dimensional carbon nanotube assembly", ACS Applied Materials & Interfaces, 3(2): 469-475, (2011).
  • 6. Liu Y. J., Nishimura N., Qian D., Adachi N., Otani Y. and Mokashi V., "A boundary element method for the analysis of cnt/polymer composites with a cohesive ınterface model based on molecular dynamics", Engineering Analysis with Boundary Elements, 32(4): 299-308, (2008).
  • 7. Lu P. and Hsieh Y.-L., "Multiwalled carbon nanotube (mwcnt) reinforced cellulose fibers by electrospinning", ACS Applied Materials & Interfaces, 2(8): 2413-2420, (2010).
  • 8. Ma W., Liu L., Zhang Z., Yang R., Liu G., Zhang T., An X., Yi X., Ren Y., Niu Z., Li J., Dong H., Zhou W., Ajayan P. M. and Xie S., "High-Strength composite fibers: realizing true potential of carbon nanotubes in polymer matrix through continuous reticulate architecture and molecular level couplings", Nano Letters, 9(8): 2855-2861, (2009).
  • 9. Mottaghitalab V., Spinks G. M. and Wallace G. G., "The influence of carbon nanotubes on mechanical and electrical properties of polyaniline fibers", Synthetic Metals, 152(1-3): 77-80, (2005).
  • 10. Odegard G. M., Clancy T. C. and Gates T. S., "Modeling of the mechanical properties of nanoparticle/polymer composites", Polymer, 46(2): 553-562, (2005).
  • 11. Odegard G. M., Gates T. S., Wise K. E., Park C. and Siochi E. J., "Constitutive modeling of nanotube-reinforced polymer composites", Composites Science and Technology, 63(11): 1671-1687, (2003).
  • 12. Ozden-Yenigun E., Menceloglu Y. Z. ve Papila M., "MWCNT/P(St-co-GMA) composite nanofibers of engineered ınterface chemistry for epoxy matrix nanocomposites", ACS Applied Materials & Interfaces, 4(2): 777-784, (2012).
  • 13. Ozden E., Menceloglu Y. Z. and Papila M., "Engineering chemistry of electrospun nanofibers and ınterfaces in nanocomposites for superior mechanical properties", ACS Applied Materials & Interfaces, 2(7): 1788-1793, (2010).
  • 14. Tan H., Jiang L. Y., Huang Y., Liu B. and Hwang K. C., "The effect of van der waals-based ınterface cohesive law on carbon nanotube-reinforced composite materials", Composites Science and Technology, 67(14): 2941-1946, (2007).
  • 15. Wong M., Paramsothy M., Xu X. J., Ren Y., Li S. and Liao K., "Physical interactions at carbon nanotube-polymer interface", Polymer, 44(25): 7757-7764, (2003).
  • 16. Wu X.-F. and Yarin A. L., "Recent progress in ınterfacial toughening and damage self-healing of polymer composites based on electrospun and solution-blown nanofibers: an overview", Journal of Applied Polymer Science, 130(4): 2225-2237, (2013).
  • 17. Bhuiyan M. A., Pucha R. V., Worthy J., Karevan M. and Kalaitzidou K., "Understanding the effect of cnt characteristics on the tensile modulus of cnt reinforced polypropylene using finite element analysis", Computational Materials Science, 79: 368-376, (2013).
  • 18. Bobaru F. and Silling S. A., "Peridynamic 3D models of nanofiber networks and carbon nanotube-reinforced composites", American Institute of Physics Conference Proceedings, 712: 1565, (2004).
  • 19. Gates T. S., Odegard G. M., Frankland S. J. V. and Clancy T. C., "Computational materials: multi-scale modeling and simulation of nanostructured materials", Composites Science and Technology, 65(15-16): 2416-2434, (2005).
  • 20. Valavala P. K. and Odegard G. M., "Modeling techniques for determination of mechanical properties of polymer nanocomposites", Reviews on Advanced Materials Science, 9(1): 34-44, (2005).
  • 21. Ozden-Yenigun E., Atilgan C. and Elliott J.A., "Multi-scale modelling of carbon nanotube reinforced crosslinked interfaces", Computational Materials Science, 129: 279-289, (2017).
  • 22. Fermeglia M., Maly M., Posocco P. and Pricl S., "Multiscale molecular modeling of hybrid organic-ınorganic nanocomposites of type I and II", Advances in Science and Technology, 54: 265-269, (2008).
  • 23. Li C. Y. and Chou T. W., "Multiscale modeling of carbon nanotube reinforced polymer composites", Journal of Nanoscience and Nanotechnology, 3(5): 423-430, (2003).
  • 24. Li P. J., Wang Q. Z. and Shi S. F., "Differential scheme for the effective elastic properties of nano-particle composites with ınterface effect", Computational Materials Science, 50(11): 3230-3237, (2011).
  • 25. Parashar A. and Mertiny P., "Multiscale model to study of fracture toughening in graphene/polymer nanocomposite", International Journal of Fracture, 179(1-2): 221-228, (2013).
  • 26. Scocchi G., Posocco P., Danani A., Pricl S. and Fermeglia M., "To the nanoscale, and beyond multiscale molecular modeling of polymer-clay nanocomposites", Fluid Phase Equilibria, 261(1-2): 366-374, (2007).
  • 27. Takeda T., Shindo Y., Narita F. and Mito Y., "Tensile characterization of carbon nanotube-reinforced polymer composites at cryogenic temperatures: experiments and multiscale simulations", Materials Transactions, 50(3): 436-445, (2009).
  • 28. Wang H. W., Zhou H. W., Peng R. D. and Mishnaevsky L., "Nanoreinforced polymer composites: 3D fem modeling with effective ınterface concept", Composites Science and Technology, 71(7): 980-988, (2011).
  • 29. Zeng Q. H., Yu A. B. and Lu G. Q., "Multiscale modeling and simulation of polymer nanocomposites", Progress in Polymer Science, 33(2): 191-269, (2008).
  • 30. Ionita M., Ciupina V. and Vasile E., "Influence of different carbon nanotubes on the mechanical properties of polyaniline nanocomposite - multiscale molecular modeling", Journal of Optoelectronics and Advanced Materials, 13(7-8): 769-775, (2011).
  • 31. Liu W., Zhang S., Hao L., Yang F., Jiao W., Li X. and Wang R., "Fabrication of carbon nanotubes/carbon fiber hybrid fiber in ındustrial scale by sizing process", Applied Surface Science, 284: 914-920, (2013).
  • 32. Porter D., "Pragmatic multiscale modelling of bone as a natural hybrid nanocomposite", Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 365(1-2): 38-45, (2004).
  • 33. Pricl S., Posocco P., Fermeglia M., Scocchi G., Danani A., Handgraaf J. W. and Fraaije H. G. E. M., "The dark side of the moon: a multiscale approach to self-assembly of dendrimers for cancer therapy", Molecular Cancer Therapeutics, 6(11): C102, (2007).
  • 34. Scocchi G., Posoccon P., Fermeglia M. and Pricl S., "Polymer-clay nanocomposites: a multiscale molecular modeling approach", Journal of Physical Chemistry B, 111(9): 2143-2151, (2007).
  • 35. Sheng N., Boyce M. C., Parks D. M., Rutledge G. C., Abes J. I. and Cohen R. E., "Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle", Polymer, 45(2): 487-506, (2004).
  • 36. Zappalorto M., Salviato M. and Quaresimin M., "A multiscale model to describe nanocomposite fracture toughness enhancement by the plastic yielding of nanovoids", Composites Science and Technology, 72(14): 1683-1691, (2012).
  • 37. Groot R. D. and Warren P. B., "Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation", Journal of Chemical Physics, 107(11): 4423-4435, (1997).
  • 38. Doruker P. and Mattice W. L., "Reverse mapping of coarse-grained polyethylene chains from the second nearest neighbor diamond lattice to an atomistic model in continuous space", Macromolecules, 30(18): 5520-5526, (1997).
  • 39. Ghanbari A., Bohm M. C. and Muller-Plathe F., "A simple reverse mapping procedure for coarse-grained polymer models with rigid side groups", Macromolecules, 44(13): 5520-5526, (2011).
  • 40. Harmandaris V. A., Adhikari N. P., van der Vegt N. F. A. and Kremer K., "Hierarchical modeling of polystyrene: from atomistic to coarse-grained simulations" Macromolecules, 39(19): 6708-6719, (2006).
  • 41. Kacar G., Atilgan C. and Ozen A. S., "Mapping and reverse-mapping of the morphologies for a molecular understanding of the self-assembly of fluorinated block copolymers", Journal of Physical Chemistry C, 114(1): 370-382, (2010).
  • 42. Peter C., Delle Site L. and Kremer K., "Classical simulations from the atomistic to the mesoscale and back: coarse graining an azobenzene liquid crystal", Soft Matter, 4(4): 859-869, (2008).
  • 43. Peter C. and Kremer K., "Multiscale simulation of soft matter systems – from the atomistic to the coarse-grained level and back", Soft Matter, 5: 4357, (2009).
  • 44. Santangelo G., Di Matteo A., Muller-Plathe F. and Milano G., "From mesoscale back to atomistic models: a fast reverse-mapping procedure for vinyl polymer chains", Journal of Physical Chemistry B,111(11): 2765-2773, (2007).
  • 45. Spyriouni T., Tzoumanekas C., Theodorou D., Muller-Plathe F. and Milano G., "Coarse-grained and reverse-mapped united-atom simulations of long-chain atactic polystyrene melts: structure, thermodynamic properties, chain conformation, and entanglements", Macromolecules, 40(10): 3876-3885, (2007).
  • 46. Rzepiela A. J., Schafer L. V., Goga N., Risselada H. J., De Vries A. H. and Marrink S. J., "Software news and update reconstruction of atomistic details from coarse-grained structures", Journal of Computational Chemistry, 31(6): 1333-1343, (2010).
  • 47. Rittigstein P. and Torkelson J. M., " Polymer–nanoparticle interfacial interactions in polymer nanocomposites: confinement effects on glass transition temperature and suppression of physical aging", J Polym Sci Pol Phys, 44: 2935-2943, (2006).
  • 48. Ozden-Yenigun E., Simsek E., Menceloglu Y.Z. and Atilgan, C., "Molecular basis for solvent dependent morphologies observed on electrosprayed surfaces", Physical Chemistry Chemical Physics, 15: 17862-17872, (2013).
  • 49. Gotovac S., Honda H., Hattori Y., Takahashi K., Kanoh H. and Kaneko K., "Effect of nanoscale curvature of single-walled carbon nanotubes on adsorption of polycyclic aromatic hydrocarbons", Nano Letters, 7: 583-587, (2007).
  • 50. Zhao J., Lu J.P., Han J. and Yang C-K., "Noncovalent functionalization of carbon nanotubes by aromatic organic molecules", Appl Phys Lett., 82: 3746-3748, (2003).
  • 51. Jahangiri S. and Ozden-Yenigun E. "The stability and dispersion of carbon nanotube-polymer solutions: a molecular dynamics study", Journal of Industrial Textiles (basımda), DOI: 10.1177/1528083717702006, (2017). 52. Lu J. P., "Elastic properties of single and multilayered nanotubes", J Phys Chem Solids, 58: 1649-1652, (1997).
Year 2017, Volume: 20 Issue: 3, 503 - 511, 15.09.2017

Abstract

References

  • 1. Schandler L. S., Brinson L. C. and Sawyer W. G., "Polymer nanocomposites: a small part of the story", JOM, 59(3): 53-60, (2007).
  • 2. Beese A. M., Sarkar S., Nair A., Naraghi M., An Z., Moravsky A., Loutfy R. O., Buehler M. J., Nguyen S. T. and Espinosa H. D., "Bio-Inspired carbon nanotube-polymer composite yarns with hydrogen bond-mediated lateral ınteractions", ACS Nano, 7(4): 3434-3446, (2013).
  • 3. Es'haghi Z., Golsefidi M. A., Saify A., Tanha A. A., Rezaeifar Z. and Alian-Nezhadi Z., "Carbon nanotube reinforced hollow fiber solid/liquid phase microextraction: a novel extraction technique for the measurement of caffeic acid in echinacea purpurea herbal extracts combined with high-performance liquid chromatography", Journal of Chromatography A, 1217(17): 2768-2775, (2010).
  • 4. Fu S.-Y., Feng X.-Q., Lauke B. and Mai Y.-W., "Effects of particle size, particle/matrix ınterface adhesion and particle loading on mechanical properties of particulate-polymer composites", Composites Part B-Engineering, 39(6): 933-961, (2008).
  • 5. Imaizumi S., Matsumoto H., Konosu Y., Tsuboi K., Minagawa M., Tanioka A., Koziol K. and Windle A., "Top-down process based on electrospinning, twisting, and heating for producing one-dimensional carbon nanotube assembly", ACS Applied Materials & Interfaces, 3(2): 469-475, (2011).
  • 6. Liu Y. J., Nishimura N., Qian D., Adachi N., Otani Y. and Mokashi V., "A boundary element method for the analysis of cnt/polymer composites with a cohesive ınterface model based on molecular dynamics", Engineering Analysis with Boundary Elements, 32(4): 299-308, (2008).
  • 7. Lu P. and Hsieh Y.-L., "Multiwalled carbon nanotube (mwcnt) reinforced cellulose fibers by electrospinning", ACS Applied Materials & Interfaces, 2(8): 2413-2420, (2010).
  • 8. Ma W., Liu L., Zhang Z., Yang R., Liu G., Zhang T., An X., Yi X., Ren Y., Niu Z., Li J., Dong H., Zhou W., Ajayan P. M. and Xie S., "High-Strength composite fibers: realizing true potential of carbon nanotubes in polymer matrix through continuous reticulate architecture and molecular level couplings", Nano Letters, 9(8): 2855-2861, (2009).
  • 9. Mottaghitalab V., Spinks G. M. and Wallace G. G., "The influence of carbon nanotubes on mechanical and electrical properties of polyaniline fibers", Synthetic Metals, 152(1-3): 77-80, (2005).
  • 10. Odegard G. M., Clancy T. C. and Gates T. S., "Modeling of the mechanical properties of nanoparticle/polymer composites", Polymer, 46(2): 553-562, (2005).
  • 11. Odegard G. M., Gates T. S., Wise K. E., Park C. and Siochi E. J., "Constitutive modeling of nanotube-reinforced polymer composites", Composites Science and Technology, 63(11): 1671-1687, (2003).
  • 12. Ozden-Yenigun E., Menceloglu Y. Z. ve Papila M., "MWCNT/P(St-co-GMA) composite nanofibers of engineered ınterface chemistry for epoxy matrix nanocomposites", ACS Applied Materials & Interfaces, 4(2): 777-784, (2012).
  • 13. Ozden E., Menceloglu Y. Z. and Papila M., "Engineering chemistry of electrospun nanofibers and ınterfaces in nanocomposites for superior mechanical properties", ACS Applied Materials & Interfaces, 2(7): 1788-1793, (2010).
  • 14. Tan H., Jiang L. Y., Huang Y., Liu B. and Hwang K. C., "The effect of van der waals-based ınterface cohesive law on carbon nanotube-reinforced composite materials", Composites Science and Technology, 67(14): 2941-1946, (2007).
  • 15. Wong M., Paramsothy M., Xu X. J., Ren Y., Li S. and Liao K., "Physical interactions at carbon nanotube-polymer interface", Polymer, 44(25): 7757-7764, (2003).
  • 16. Wu X.-F. and Yarin A. L., "Recent progress in ınterfacial toughening and damage self-healing of polymer composites based on electrospun and solution-blown nanofibers: an overview", Journal of Applied Polymer Science, 130(4): 2225-2237, (2013).
  • 17. Bhuiyan M. A., Pucha R. V., Worthy J., Karevan M. and Kalaitzidou K., "Understanding the effect of cnt characteristics on the tensile modulus of cnt reinforced polypropylene using finite element analysis", Computational Materials Science, 79: 368-376, (2013).
  • 18. Bobaru F. and Silling S. A., "Peridynamic 3D models of nanofiber networks and carbon nanotube-reinforced composites", American Institute of Physics Conference Proceedings, 712: 1565, (2004).
  • 19. Gates T. S., Odegard G. M., Frankland S. J. V. and Clancy T. C., "Computational materials: multi-scale modeling and simulation of nanostructured materials", Composites Science and Technology, 65(15-16): 2416-2434, (2005).
  • 20. Valavala P. K. and Odegard G. M., "Modeling techniques for determination of mechanical properties of polymer nanocomposites", Reviews on Advanced Materials Science, 9(1): 34-44, (2005).
  • 21. Ozden-Yenigun E., Atilgan C. and Elliott J.A., "Multi-scale modelling of carbon nanotube reinforced crosslinked interfaces", Computational Materials Science, 129: 279-289, (2017).
  • 22. Fermeglia M., Maly M., Posocco P. and Pricl S., "Multiscale molecular modeling of hybrid organic-ınorganic nanocomposites of type I and II", Advances in Science and Technology, 54: 265-269, (2008).
  • 23. Li C. Y. and Chou T. W., "Multiscale modeling of carbon nanotube reinforced polymer composites", Journal of Nanoscience and Nanotechnology, 3(5): 423-430, (2003).
  • 24. Li P. J., Wang Q. Z. and Shi S. F., "Differential scheme for the effective elastic properties of nano-particle composites with ınterface effect", Computational Materials Science, 50(11): 3230-3237, (2011).
  • 25. Parashar A. and Mertiny P., "Multiscale model to study of fracture toughening in graphene/polymer nanocomposite", International Journal of Fracture, 179(1-2): 221-228, (2013).
  • 26. Scocchi G., Posocco P., Danani A., Pricl S. and Fermeglia M., "To the nanoscale, and beyond multiscale molecular modeling of polymer-clay nanocomposites", Fluid Phase Equilibria, 261(1-2): 366-374, (2007).
  • 27. Takeda T., Shindo Y., Narita F. and Mito Y., "Tensile characterization of carbon nanotube-reinforced polymer composites at cryogenic temperatures: experiments and multiscale simulations", Materials Transactions, 50(3): 436-445, (2009).
  • 28. Wang H. W., Zhou H. W., Peng R. D. and Mishnaevsky L., "Nanoreinforced polymer composites: 3D fem modeling with effective ınterface concept", Composites Science and Technology, 71(7): 980-988, (2011).
  • 29. Zeng Q. H., Yu A. B. and Lu G. Q., "Multiscale modeling and simulation of polymer nanocomposites", Progress in Polymer Science, 33(2): 191-269, (2008).
  • 30. Ionita M., Ciupina V. and Vasile E., "Influence of different carbon nanotubes on the mechanical properties of polyaniline nanocomposite - multiscale molecular modeling", Journal of Optoelectronics and Advanced Materials, 13(7-8): 769-775, (2011).
  • 31. Liu W., Zhang S., Hao L., Yang F., Jiao W., Li X. and Wang R., "Fabrication of carbon nanotubes/carbon fiber hybrid fiber in ındustrial scale by sizing process", Applied Surface Science, 284: 914-920, (2013).
  • 32. Porter D., "Pragmatic multiscale modelling of bone as a natural hybrid nanocomposite", Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 365(1-2): 38-45, (2004).
  • 33. Pricl S., Posocco P., Fermeglia M., Scocchi G., Danani A., Handgraaf J. W. and Fraaije H. G. E. M., "The dark side of the moon: a multiscale approach to self-assembly of dendrimers for cancer therapy", Molecular Cancer Therapeutics, 6(11): C102, (2007).
  • 34. Scocchi G., Posoccon P., Fermeglia M. and Pricl S., "Polymer-clay nanocomposites: a multiscale molecular modeling approach", Journal of Physical Chemistry B, 111(9): 2143-2151, (2007).
  • 35. Sheng N., Boyce M. C., Parks D. M., Rutledge G. C., Abes J. I. and Cohen R. E., "Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle", Polymer, 45(2): 487-506, (2004).
  • 36. Zappalorto M., Salviato M. and Quaresimin M., "A multiscale model to describe nanocomposite fracture toughness enhancement by the plastic yielding of nanovoids", Composites Science and Technology, 72(14): 1683-1691, (2012).
  • 37. Groot R. D. and Warren P. B., "Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation", Journal of Chemical Physics, 107(11): 4423-4435, (1997).
  • 38. Doruker P. and Mattice W. L., "Reverse mapping of coarse-grained polyethylene chains from the second nearest neighbor diamond lattice to an atomistic model in continuous space", Macromolecules, 30(18): 5520-5526, (1997).
  • 39. Ghanbari A., Bohm M. C. and Muller-Plathe F., "A simple reverse mapping procedure for coarse-grained polymer models with rigid side groups", Macromolecules, 44(13): 5520-5526, (2011).
  • 40. Harmandaris V. A., Adhikari N. P., van der Vegt N. F. A. and Kremer K., "Hierarchical modeling of polystyrene: from atomistic to coarse-grained simulations" Macromolecules, 39(19): 6708-6719, (2006).
  • 41. Kacar G., Atilgan C. and Ozen A. S., "Mapping and reverse-mapping of the morphologies for a molecular understanding of the self-assembly of fluorinated block copolymers", Journal of Physical Chemistry C, 114(1): 370-382, (2010).
  • 42. Peter C., Delle Site L. and Kremer K., "Classical simulations from the atomistic to the mesoscale and back: coarse graining an azobenzene liquid crystal", Soft Matter, 4(4): 859-869, (2008).
  • 43. Peter C. and Kremer K., "Multiscale simulation of soft matter systems – from the atomistic to the coarse-grained level and back", Soft Matter, 5: 4357, (2009).
  • 44. Santangelo G., Di Matteo A., Muller-Plathe F. and Milano G., "From mesoscale back to atomistic models: a fast reverse-mapping procedure for vinyl polymer chains", Journal of Physical Chemistry B,111(11): 2765-2773, (2007).
  • 45. Spyriouni T., Tzoumanekas C., Theodorou D., Muller-Plathe F. and Milano G., "Coarse-grained and reverse-mapped united-atom simulations of long-chain atactic polystyrene melts: structure, thermodynamic properties, chain conformation, and entanglements", Macromolecules, 40(10): 3876-3885, (2007).
  • 46. Rzepiela A. J., Schafer L. V., Goga N., Risselada H. J., De Vries A. H. and Marrink S. J., "Software news and update reconstruction of atomistic details from coarse-grained structures", Journal of Computational Chemistry, 31(6): 1333-1343, (2010).
  • 47. Rittigstein P. and Torkelson J. M., " Polymer–nanoparticle interfacial interactions in polymer nanocomposites: confinement effects on glass transition temperature and suppression of physical aging", J Polym Sci Pol Phys, 44: 2935-2943, (2006).
  • 48. Ozden-Yenigun E., Simsek E., Menceloglu Y.Z. and Atilgan, C., "Molecular basis for solvent dependent morphologies observed on electrosprayed surfaces", Physical Chemistry Chemical Physics, 15: 17862-17872, (2013).
  • 49. Gotovac S., Honda H., Hattori Y., Takahashi K., Kanoh H. and Kaneko K., "Effect of nanoscale curvature of single-walled carbon nanotubes on adsorption of polycyclic aromatic hydrocarbons", Nano Letters, 7: 583-587, (2007).
  • 50. Zhao J., Lu J.P., Han J. and Yang C-K., "Noncovalent functionalization of carbon nanotubes by aromatic organic molecules", Appl Phys Lett., 82: 3746-3748, (2003).
  • 51. Jahangiri S. and Ozden-Yenigun E. "The stability and dispersion of carbon nanotube-polymer solutions: a molecular dynamics study", Journal of Industrial Textiles (basımda), DOI: 10.1177/1528083717702006, (2017). 52. Lu J. P., "Elastic properties of single and multilayered nanotubes", J Phys Chem Solids, 58: 1649-1652, (1997).
There are 51 citations in total.

Details

Journal Section Research Article
Authors

Elif Özden Yenigün This is me

Publication Date September 15, 2017
Submission Date September 20, 2017
Published in Issue Year 2017 Volume: 20 Issue: 3

Cite

APA Özden Yenigün, E. (2017). Karbon Nanotüp-Polimer Nanokompozitlerde Çok Boyutlu Modelleme ile Arayüz Özelliklerinin İncelenmesi. Politeknik Dergisi, 20(3), 503-511. https://doi.org/10.2339/politeknik.339159
AMA Özden Yenigün E. Karbon Nanotüp-Polimer Nanokompozitlerde Çok Boyutlu Modelleme ile Arayüz Özelliklerinin İncelenmesi. Politeknik Dergisi. September 2017;20(3):503-511. doi:10.2339/politeknik.339159
Chicago Özden Yenigün, Elif. “Karbon Nanotüp-Polimer Nanokompozitlerde Çok Boyutlu Modelleme Ile Arayüz Özelliklerinin İncelenmesi”. Politeknik Dergisi 20, no. 3 (September 2017): 503-11. https://doi.org/10.2339/politeknik.339159.
EndNote Özden Yenigün E (September 1, 2017) Karbon Nanotüp-Polimer Nanokompozitlerde Çok Boyutlu Modelleme ile Arayüz Özelliklerinin İncelenmesi. Politeknik Dergisi 20 3 503–511.
IEEE E. Özden Yenigün, “Karbon Nanotüp-Polimer Nanokompozitlerde Çok Boyutlu Modelleme ile Arayüz Özelliklerinin İncelenmesi”, Politeknik Dergisi, vol. 20, no. 3, pp. 503–511, 2017, doi: 10.2339/politeknik.339159.
ISNAD Özden Yenigün, Elif. “Karbon Nanotüp-Polimer Nanokompozitlerde Çok Boyutlu Modelleme Ile Arayüz Özelliklerinin İncelenmesi”. Politeknik Dergisi 20/3 (September 2017), 503-511. https://doi.org/10.2339/politeknik.339159.
JAMA Özden Yenigün E. Karbon Nanotüp-Polimer Nanokompozitlerde Çok Boyutlu Modelleme ile Arayüz Özelliklerinin İncelenmesi. Politeknik Dergisi. 2017;20:503–511.
MLA Özden Yenigün, Elif. “Karbon Nanotüp-Polimer Nanokompozitlerde Çok Boyutlu Modelleme Ile Arayüz Özelliklerinin İncelenmesi”. Politeknik Dergisi, vol. 20, no. 3, 2017, pp. 503-11, doi:10.2339/politeknik.339159.
Vancouver Özden Yenigün E. Karbon Nanotüp-Polimer Nanokompozitlerde Çok Boyutlu Modelleme ile Arayüz Özelliklerinin İncelenmesi. Politeknik Dergisi. 2017;20(3):503-11.