Research Article
BibTex RIS Cite

Nikel-Titanyum Şekil Bellekli Alaşımların Süperelastik Davranışına Isıl İşlemin Etkisi

Year 2017, Volume: 20 Issue: 3, 623 - 627, 15.09.2017

Abstract

Şekil bellekli alaşımlar
(ŞBA), mikroyapıda östenit ve martenzit fazlar arasında tersinir termoelastik
faz dönüşümü ile makroyapıda şekil belleği ve süperelastik davranış
gösterebilen intermetalik malzemelerdir. Nikel-titanyum (NiTi) ŞBA`lar
süperelastik özelliği sebebiyle başta biyomedikal uygulamalar olmak üzere
birçok alanda hızla yaygınlaşmaktadır. Bu çalışmada,
atomik olarak % 50.8 nikel içeren NiTi numunelere uygulanan ısıl işlemin, alaşımın faz dönüşüm sıcaklığı
ve süperelastik davranışına etkisi incelenmiştir. Yapılan diferansiyel taramalı
kalorimetri (DSC) analizleri ve çekme testlerinde elde edilen sonuçlar
karşılaştırılmıştır. Çözeltiye alma ve 
yaşlandırma ısıl işlemlerinin, NiTi numunelerin süperelastik davranış
gösterme karakteristiğini artırdığı deneysel sonuçlarla gözlemlenmiştir. 

References

  • 1. Janocha H., Adaptronics and Smart Structures, Springer, (2007).
  • 2. Khoo Z. X., Teoh J. E. M., Liu Y., Chua C. K., Yang S., An J., Leong K. F., Yeong W.Y. “3D printing of smart materials: A review on recent progresses in 4D printing”, Virtual and Physical Prototyping, (2015).
  • 3. Calkins F.T. and Mabe, J.H. “Shape Memory Alloy Based Morphing Aerostructures”, Journal of Mech. Design, 132, 111012 (2010).
  • 4. Ades C., Dilibal S. and Engeberg ED. “Exoskeleton for tubular shape memory alloy finger with internal cooling and a superelastic SMA spring return”, ASME Florida Conference on Recent Advances in Robotics, Miami, Florida, (2016).
  • 5. Peduk G.S.A., Dilibal S., Harrysson O. and Özbek S. “Comparison of the production processes of nickel-titanium shape memory alloy through additive manufacturing”, Int. Symposium on 3D Printing (Additive Manufacturing, Istanbul, (2017).
  • 6. Ojha A. and Sehitoglu H., “Critical stresses for twinning, slip, and transformation in Ti-based shape memory alloys, Shape Memory and Superelasticity”, Shape Memory and Superelasticity, (2016).
  • 7. Rao A., Srinivasa A.R., Reddy J. N. “Design of Shape Memory Alloy (SMA) Actuators” Springer Briefs in Applied Sciences and Technology (2015).
  • 8. Dilibal S., “Investigation of nucleation and growth of detwinning mechanism in martensitic single crystal NiTi using digital image correlation”, Metallography, Microstructure, and Analysis, 2(4): 242-248, (2013).
  • 9. Miller, D.A. and Lagoudas, D.C. ”Influence of cold work and heat treatment on the shape memory effect and plastic strain development of NiTi”, Materials Science and Engineering A, 308: 161-175, (2001).
  • 10. Saedi, S., Turabi, A.S., Andani S.M.T., Haberland, C., Karaca, H., Elahinia M. “The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting”, Journal of Alloys and Compounds, (2016).
  • 11. Dilibal S., “The effect of long-term heat treatment on the thermomechanical behavior of NiTi shape memory alloys in defense and aerospace applications” The Journal of Defense Sciences, 15:2, 1-23, (2016).
  • 12. Gall K. and Maier H.J. “Cyclic deformation mechanisms in precipitated NiTi shape memory alloys”, Acta Materialia, 50: 4643–4657, (2002).
  • 13. Shabalovskaya S.A. “On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys” ,Bio-Medical Materials and Engineering, 6(4): 267–289, (1996).
  • 14. Gur S. and Mishra S. K., Frantziskonis G.N. “Thermo-mechanical strain rate–dependent behavior of shape memory alloys as vibration dampers and comparison to conventional dampers”, Journal of Intelligent Material Systems and Structures, (2015).
  • 15. Lana, X., Leng, J. and Du, S. “Design of a Deployable Antenna Actuated by Shape Memory Alloy Hinge”, Materials Science Forum, 546-549: 1567-1570, (2007).
  • 16. Engeberg E.D, Dilibal S., Vatani M., Choi JW and Lavery J. “Anthropomorphic finger antagonistically actuated by SMA plates”, Bioinspiration & Biomimetics, 10(5): (2015).
  • 17. Gall, K., Sehitoglu H., Chumlyakov Y., and Kireeva I. “Pseudoelastic cyclic stress strain response of over-aged single crystal Ti 50.8 % Ni”, Scripta Materialia, 40:1, 7-12, (1999).
  • 18. Corwin, W.R., Rosinski, S.T., Van Walle, E. (Eds.). ASTM STP 1329 - Small specimen test techniques, 576, (1998).
Year 2017, Volume: 20 Issue: 3, 623 - 627, 15.09.2017

Abstract

References

  • 1. Janocha H., Adaptronics and Smart Structures, Springer, (2007).
  • 2. Khoo Z. X., Teoh J. E. M., Liu Y., Chua C. K., Yang S., An J., Leong K. F., Yeong W.Y. “3D printing of smart materials: A review on recent progresses in 4D printing”, Virtual and Physical Prototyping, (2015).
  • 3. Calkins F.T. and Mabe, J.H. “Shape Memory Alloy Based Morphing Aerostructures”, Journal of Mech. Design, 132, 111012 (2010).
  • 4. Ades C., Dilibal S. and Engeberg ED. “Exoskeleton for tubular shape memory alloy finger with internal cooling and a superelastic SMA spring return”, ASME Florida Conference on Recent Advances in Robotics, Miami, Florida, (2016).
  • 5. Peduk G.S.A., Dilibal S., Harrysson O. and Özbek S. “Comparison of the production processes of nickel-titanium shape memory alloy through additive manufacturing”, Int. Symposium on 3D Printing (Additive Manufacturing, Istanbul, (2017).
  • 6. Ojha A. and Sehitoglu H., “Critical stresses for twinning, slip, and transformation in Ti-based shape memory alloys, Shape Memory and Superelasticity”, Shape Memory and Superelasticity, (2016).
  • 7. Rao A., Srinivasa A.R., Reddy J. N. “Design of Shape Memory Alloy (SMA) Actuators” Springer Briefs in Applied Sciences and Technology (2015).
  • 8. Dilibal S., “Investigation of nucleation and growth of detwinning mechanism in martensitic single crystal NiTi using digital image correlation”, Metallography, Microstructure, and Analysis, 2(4): 242-248, (2013).
  • 9. Miller, D.A. and Lagoudas, D.C. ”Influence of cold work and heat treatment on the shape memory effect and plastic strain development of NiTi”, Materials Science and Engineering A, 308: 161-175, (2001).
  • 10. Saedi, S., Turabi, A.S., Andani S.M.T., Haberland, C., Karaca, H., Elahinia M. “The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting”, Journal of Alloys and Compounds, (2016).
  • 11. Dilibal S., “The effect of long-term heat treatment on the thermomechanical behavior of NiTi shape memory alloys in defense and aerospace applications” The Journal of Defense Sciences, 15:2, 1-23, (2016).
  • 12. Gall K. and Maier H.J. “Cyclic deformation mechanisms in precipitated NiTi shape memory alloys”, Acta Materialia, 50: 4643–4657, (2002).
  • 13. Shabalovskaya S.A. “On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys” ,Bio-Medical Materials and Engineering, 6(4): 267–289, (1996).
  • 14. Gur S. and Mishra S. K., Frantziskonis G.N. “Thermo-mechanical strain rate–dependent behavior of shape memory alloys as vibration dampers and comparison to conventional dampers”, Journal of Intelligent Material Systems and Structures, (2015).
  • 15. Lana, X., Leng, J. and Du, S. “Design of a Deployable Antenna Actuated by Shape Memory Alloy Hinge”, Materials Science Forum, 546-549: 1567-1570, (2007).
  • 16. Engeberg E.D, Dilibal S., Vatani M., Choi JW and Lavery J. “Anthropomorphic finger antagonistically actuated by SMA plates”, Bioinspiration & Biomimetics, 10(5): (2015).
  • 17. Gall, K., Sehitoglu H., Chumlyakov Y., and Kireeva I. “Pseudoelastic cyclic stress strain response of over-aged single crystal Ti 50.8 % Ni”, Scripta Materialia, 40:1, 7-12, (1999).
  • 18. Corwin, W.R., Rosinski, S.T., Van Walle, E. (Eds.). ASTM STP 1329 - Small specimen test techniques, 576, (1998).
There are 18 citations in total.

Details

Journal Section Research Article
Authors

Savaş Dilibal This is me

Publication Date September 15, 2017
Submission Date September 22, 2017
Published in Issue Year 2017 Volume: 20 Issue: 3

Cite

APA Dilibal, S. (2017). Nikel-Titanyum Şekil Bellekli Alaşımların Süperelastik Davranışına Isıl İşlemin Etkisi. Politeknik Dergisi, 20(3), 623-627. https://doi.org/10.2339/politeknik.339387
AMA Dilibal S. Nikel-Titanyum Şekil Bellekli Alaşımların Süperelastik Davranışına Isıl İşlemin Etkisi. Politeknik Dergisi. September 2017;20(3):623-627. doi:10.2339/politeknik.339387
Chicago Dilibal, Savaş. “Nikel-Titanyum Şekil Bellekli Alaşımların Süperelastik Davranışına Isıl İşlemin Etkisi”. Politeknik Dergisi 20, no. 3 (September 2017): 623-27. https://doi.org/10.2339/politeknik.339387.
EndNote Dilibal S (September 1, 2017) Nikel-Titanyum Şekil Bellekli Alaşımların Süperelastik Davranışına Isıl İşlemin Etkisi. Politeknik Dergisi 20 3 623–627.
IEEE S. Dilibal, “Nikel-Titanyum Şekil Bellekli Alaşımların Süperelastik Davranışına Isıl İşlemin Etkisi”, Politeknik Dergisi, vol. 20, no. 3, pp. 623–627, 2017, doi: 10.2339/politeknik.339387.
ISNAD Dilibal, Savaş. “Nikel-Titanyum Şekil Bellekli Alaşımların Süperelastik Davranışına Isıl İşlemin Etkisi”. Politeknik Dergisi 20/3 (September 2017), 623-627. https://doi.org/10.2339/politeknik.339387.
JAMA Dilibal S. Nikel-Titanyum Şekil Bellekli Alaşımların Süperelastik Davranışına Isıl İşlemin Etkisi. Politeknik Dergisi. 2017;20:623–627.
MLA Dilibal, Savaş. “Nikel-Titanyum Şekil Bellekli Alaşımların Süperelastik Davranışına Isıl İşlemin Etkisi”. Politeknik Dergisi, vol. 20, no. 3, 2017, pp. 623-7, doi:10.2339/politeknik.339387.
Vancouver Dilibal S. Nikel-Titanyum Şekil Bellekli Alaşımların Süperelastik Davranışına Isıl İşlemin Etkisi. Politeknik Dergisi. 2017;20(3):623-7.