Research Article
BibTex RIS Cite

Experimental and Numerical Analysis of Flow around a Circular Bridge Pier

Year 2018, Volume: 21 Issue: 1, 137 - 147, 31.03.2018
https://doi.org/10.2339/politeknik.389584

Abstract

The turbulent flow field around a circular pier is
complex due to separation and generation of multiple vortices in different
structures. This topic has a great interest in engineering applications for the
design of the bridges over water. In this study, the velocity field of flow
around a circular pier is measured using Laser Doppler Anemometry (LDA). The
Basic equations of the problem are solved by ANSYS-Fluent program package based
on finite volume method for the flow case having the same experimental conditions.
In the numerical simulations, Standard k-ε,
Renormalization Group k-ε and
Realizable k-ε turbulence closure
model are used for the simulation of turbulence, and the flow profile is
computed using Volume of Fluid method. Grid Convergence Index (GCI) is
performed to examine the effect of the selected grid structure on the numerical
results. The computed results for velocities and free surface profiles are
compared with measured data. The comparisons of the experimental and numerical
results show that Realizable k-ε is
more successful turbulence model among the other models in predicting the
velocity field and free surface profiles.

References

  • [1] Yanmaz, A.M., "Köprü Hidroliği", ODTÜ Geliştirme Vakfı Yayıncılık ve İletişim A.Ş., ANKARA, (2002).
  • [2] Richardson, J.E. and Panchang, V.G., "Three-dimensional simulation of scour-inducing flow at bridge piers", Journal of Hydraulic Engineering, 124(5): 530-540, (1998).
  • [3] Melville, B.W. and Coleman, S.E., "Bridge scour", Water Resources Publication, Colorado, U.S.A.,(2000).
  • [4] Kirkil, G., Constantinescu, G. and Ettema, R., "Detached eddy simulation investigation of turbulence at a circular pier with scour hole", Journal of Hydraulic Engineering, 135(11): 888-901, (2009).
  • [5] Huang, W., Yang, Q. and Xiao, H., 2009. "CFD modeling of scale effects on turbulence flow and scour around bridge piers", Computers & Fluids, 38(5): 1050-1058, (2009).
  • [6] Salaheldin, T.M., Imran, J. and Chaudhry, M.H., "Numerical modeling of three-dimensional flow field around circular piers", Journal of Hydraulic Engineering, 130(2): 91-100, (2004).
  • [7] Duan, J.G., "Two-dimensional model simulation of flow field around bridge piers", Impacts of Global Climate Change: 1-12, (2005). [8] Melville, B.W., "Local scour at bridge sites", researchspace@auckland, (1975).
  • [9] Yanmaz, A.M. and Altinbilek, H.D., "Study of time-depenbent local scour around bridge piers", Journal of Hydraulic Engineering, 117(10): 1247-1268, (1991).
  • [10] Ali, K. H. and Karim, O., "Simulation of flow around piers", Journal of Hydraulic Research, 40(2): 161-174, (2002).
  • [11] Smith, H.D. and Foster, D.L., "Modeling of flow around a cylinder over a scoured bed", Journal of Waterway, Port, Coastal, and Ocean Engineering, 131(1): 14-24, (2005).
  • [12] Jensen, B., Sumer, B., Jensen, H. and Fredsoe, J., "Flow around and forces on a pipeline near a scoured bed in steady current", Journal of Offshore Mechanics and Arctic Engineering, 112(3): 206-213, (1990).
  • [13] Fayyadh, M., Akib, S., Othman, I. and Razak, H.A., "Experimental investigation and finite element modelling of the effects of flow velocities on a skewed integral bridge", Simulation Modelling Practice and Theory, 19(9): 1795-1810, (2011).
  • [14] Zhu, Z. and Liu, Z., "CFD prediction of local scour hole around bridge piers", Journal of Central South University, 19: 273-281, (2012).
  • [15] Demirci, M., Kocaman, S. and Varlı, B., "Farklı geometrilerdeki köprü kenar ayakları etrafındaki hız dağılımının sayısal incelenmesi", Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(3): 161-173, (2012).
  • [16] Afzal, M.S., Bihs, H., Kamath, A. and Arntsen, Ø.A., "Three-dimensional numerical modeling of pier scour under current and waves using level-set method", Journal of Offshore Mechanics and Arctic Engineering, 137(3): 032001, (2015).
  • [17] Zhang, K., Katsuchi, H., Zhou, D., Yamada, H. and Han, Z., "Numerical study on the effect of shape modification to the flow around circular cylinders", Journal of Wind Engineering and Industrial Aerodynamics, 152: 23-40, (2016).
  • [18] Launder, B.E. and Spalding, D.B., "Lectures in Mathematical Models of Turbulence", Academic Press, London, (1972).
  • [19] Yakhot, V. and Orszag, S.A., "Renormalization-Group Analysis of Turbulence", Physical Review Letters, 57(14): 1722-1724, (1986).
  • [20] Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B. and Speziale, C.G., "Development of Turbulence Models for Shear Flows by a Double Expansion Technique", Physics of Fluids a-Fluid Dynamics, 4(7): 1510-1520, (1992).
  • [21] Shih, T.H., Liou, W.W., Shabbir, A., Yang, Z.G. and Zhu, J., "A New Kappa-Epsilon Eddy Viscosity Model for High Reynolds-Number Turbulent Flows", Computers & Fluids, 24(3): 227-238, (1995).
  • [22] Hirt, C.W. and Nichols, B.D., "Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries", Journal of Computational Physics, 39(1): 201-225, (1981).
  • [23] ANSYS, "Fluent Theory Guide", ANSYS Inc. USA, (2012).
  • [24] Patankar, S.V. and Spalding, D.B., "A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows", International Journal of Heat and Mass Transfer, 15(10): 1787-1806, (1972).
  • [25] Chen, H. and Patel, V., "Near-wall turbulence models for complex flows including separation", AIAA Journal, 26(6): 641-648, (1988).
  • [26] Çelik, I.B., Ghia, U., Roache, P.J. and Freitas, C.J., "Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications", Journal of Fluids Engineering-Transactions of the ASME, 130(7), (2008).
  • [27] Roache, P.J., "Verification of codes and calculations", AIAA Journal, 36(5): 696-702, (1998).

Köprü Ayağı Etrafındaki Türbülanslı Akımın Sayısal ve Deneysel Analizi

Year 2018, Volume: 21 Issue: 1, 137 - 147, 31.03.2018
https://doi.org/10.2339/politeknik.389584

Abstract

Dairesel bir köprü ayağı
etrafındaki türbülanslı akış alanı, çoklu girdapların oluşumu nedeniyle
karmaşık bir yapıya sahiptir. Köprü ayağı etrafında meydana gelen bu karmaşık
akım yapısının belirlenmesi, bu tür yapıların tasarımı açısından önem kazanmaktadır.
Bu çalışmada köprü ayağı etrafındaki üç boyutlu türbülanslı akımın hız alanı
laboratuvar ortamında Lazer Doppler Anemometresi (LDA) ile ölçülmüş ve deney
ile aynı koşullardaki akım için temel denklemler, sonlu hacimler yöntemine
dayalı ANSYS-Fluent paket programı ile sayısal olarak çözülmüştür. Sayısal
modellemede, Standard k-ε,
Renormalization Group k-ε ve
Realizable k-ε türbülans modeli
kullanılmış ve serbest su yüzü profili Akışkan Hacimleri Yöntemi ile
hesaplanmıştır. Seçilen ağ yapısının sayısal sonuçlara olan etkisini incelemek
için Ağ Yakınsama İndeksi (GCI) kullanılmıştır. Sayısal sonuçlardan elde edilen
hız alanı ve su yüzü profilleri deneysel ölçümlerle karşılaştırılmış,
Realizable k-ε türbülans modelinin
köprü ayağı etrafındaki akım alanını belirlemede diğer modellere göre daha
başarılı olduğu tespit edilmiştir. 

References

  • [1] Yanmaz, A.M., "Köprü Hidroliği", ODTÜ Geliştirme Vakfı Yayıncılık ve İletişim A.Ş., ANKARA, (2002).
  • [2] Richardson, J.E. and Panchang, V.G., "Three-dimensional simulation of scour-inducing flow at bridge piers", Journal of Hydraulic Engineering, 124(5): 530-540, (1998).
  • [3] Melville, B.W. and Coleman, S.E., "Bridge scour", Water Resources Publication, Colorado, U.S.A.,(2000).
  • [4] Kirkil, G., Constantinescu, G. and Ettema, R., "Detached eddy simulation investigation of turbulence at a circular pier with scour hole", Journal of Hydraulic Engineering, 135(11): 888-901, (2009).
  • [5] Huang, W., Yang, Q. and Xiao, H., 2009. "CFD modeling of scale effects on turbulence flow and scour around bridge piers", Computers & Fluids, 38(5): 1050-1058, (2009).
  • [6] Salaheldin, T.M., Imran, J. and Chaudhry, M.H., "Numerical modeling of three-dimensional flow field around circular piers", Journal of Hydraulic Engineering, 130(2): 91-100, (2004).
  • [7] Duan, J.G., "Two-dimensional model simulation of flow field around bridge piers", Impacts of Global Climate Change: 1-12, (2005). [8] Melville, B.W., "Local scour at bridge sites", researchspace@auckland, (1975).
  • [9] Yanmaz, A.M. and Altinbilek, H.D., "Study of time-depenbent local scour around bridge piers", Journal of Hydraulic Engineering, 117(10): 1247-1268, (1991).
  • [10] Ali, K. H. and Karim, O., "Simulation of flow around piers", Journal of Hydraulic Research, 40(2): 161-174, (2002).
  • [11] Smith, H.D. and Foster, D.L., "Modeling of flow around a cylinder over a scoured bed", Journal of Waterway, Port, Coastal, and Ocean Engineering, 131(1): 14-24, (2005).
  • [12] Jensen, B., Sumer, B., Jensen, H. and Fredsoe, J., "Flow around and forces on a pipeline near a scoured bed in steady current", Journal of Offshore Mechanics and Arctic Engineering, 112(3): 206-213, (1990).
  • [13] Fayyadh, M., Akib, S., Othman, I. and Razak, H.A., "Experimental investigation and finite element modelling of the effects of flow velocities on a skewed integral bridge", Simulation Modelling Practice and Theory, 19(9): 1795-1810, (2011).
  • [14] Zhu, Z. and Liu, Z., "CFD prediction of local scour hole around bridge piers", Journal of Central South University, 19: 273-281, (2012).
  • [15] Demirci, M., Kocaman, S. and Varlı, B., "Farklı geometrilerdeki köprü kenar ayakları etrafındaki hız dağılımının sayısal incelenmesi", Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(3): 161-173, (2012).
  • [16] Afzal, M.S., Bihs, H., Kamath, A. and Arntsen, Ø.A., "Three-dimensional numerical modeling of pier scour under current and waves using level-set method", Journal of Offshore Mechanics and Arctic Engineering, 137(3): 032001, (2015).
  • [17] Zhang, K., Katsuchi, H., Zhou, D., Yamada, H. and Han, Z., "Numerical study on the effect of shape modification to the flow around circular cylinders", Journal of Wind Engineering and Industrial Aerodynamics, 152: 23-40, (2016).
  • [18] Launder, B.E. and Spalding, D.B., "Lectures in Mathematical Models of Turbulence", Academic Press, London, (1972).
  • [19] Yakhot, V. and Orszag, S.A., "Renormalization-Group Analysis of Turbulence", Physical Review Letters, 57(14): 1722-1724, (1986).
  • [20] Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B. and Speziale, C.G., "Development of Turbulence Models for Shear Flows by a Double Expansion Technique", Physics of Fluids a-Fluid Dynamics, 4(7): 1510-1520, (1992).
  • [21] Shih, T.H., Liou, W.W., Shabbir, A., Yang, Z.G. and Zhu, J., "A New Kappa-Epsilon Eddy Viscosity Model for High Reynolds-Number Turbulent Flows", Computers & Fluids, 24(3): 227-238, (1995).
  • [22] Hirt, C.W. and Nichols, B.D., "Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries", Journal of Computational Physics, 39(1): 201-225, (1981).
  • [23] ANSYS, "Fluent Theory Guide", ANSYS Inc. USA, (2012).
  • [24] Patankar, S.V. and Spalding, D.B., "A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows", International Journal of Heat and Mass Transfer, 15(10): 1787-1806, (1972).
  • [25] Chen, H. and Patel, V., "Near-wall turbulence models for complex flows including separation", AIAA Journal, 26(6): 641-648, (1988).
  • [26] Çelik, I.B., Ghia, U., Roache, P.J. and Freitas, C.J., "Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications", Journal of Fluids Engineering-Transactions of the ASME, 130(7), (2008).
  • [27] Roache, P.J., "Verification of codes and calculations", AIAA Journal, 36(5): 696-702, (1998).
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

N. Göksu Soydan This is me

Oğuz Şimşek

M. Sami Aköz This is me

Publication Date March 31, 2018
Submission Date January 18, 2017
Published in Issue Year 2018 Volume: 21 Issue: 1

Cite

APA Soydan, N. G., Şimşek, O., & Aköz, M. S. (2018). Köprü Ayağı Etrafındaki Türbülanslı Akımın Sayısal ve Deneysel Analizi. Politeknik Dergisi, 21(1), 137-147. https://doi.org/10.2339/politeknik.389584
AMA Soydan NG, Şimşek O, Aköz MS. Köprü Ayağı Etrafındaki Türbülanslı Akımın Sayısal ve Deneysel Analizi. Politeknik Dergisi. March 2018;21(1):137-147. doi:10.2339/politeknik.389584
Chicago Soydan, N. Göksu, Oğuz Şimşek, and M. Sami Aköz. “Köprü Ayağı Etrafındaki Türbülanslı Akımın Sayısal Ve Deneysel Analizi”. Politeknik Dergisi 21, no. 1 (March 2018): 137-47. https://doi.org/10.2339/politeknik.389584.
EndNote Soydan NG, Şimşek O, Aköz MS (March 1, 2018) Köprü Ayağı Etrafındaki Türbülanslı Akımın Sayısal ve Deneysel Analizi. Politeknik Dergisi 21 1 137–147.
IEEE N. G. Soydan, O. Şimşek, and M. S. Aköz, “Köprü Ayağı Etrafındaki Türbülanslı Akımın Sayısal ve Deneysel Analizi”, Politeknik Dergisi, vol. 21, no. 1, pp. 137–147, 2018, doi: 10.2339/politeknik.389584.
ISNAD Soydan, N. Göksu et al. “Köprü Ayağı Etrafındaki Türbülanslı Akımın Sayısal Ve Deneysel Analizi”. Politeknik Dergisi 21/1 (March 2018), 137-147. https://doi.org/10.2339/politeknik.389584.
JAMA Soydan NG, Şimşek O, Aköz MS. Köprü Ayağı Etrafındaki Türbülanslı Akımın Sayısal ve Deneysel Analizi. Politeknik Dergisi. 2018;21:137–147.
MLA Soydan, N. Göksu et al. “Köprü Ayağı Etrafındaki Türbülanslı Akımın Sayısal Ve Deneysel Analizi”. Politeknik Dergisi, vol. 21, no. 1, 2018, pp. 137-4, doi:10.2339/politeknik.389584.
Vancouver Soydan NG, Şimşek O, Aköz MS. Köprü Ayağı Etrafındaki Türbülanslı Akımın Sayısal ve Deneysel Analizi. Politeknik Dergisi. 2018;21(1):137-4.