Research Article
BibTex RIS Cite

Alüminyum Alaşımının Derin Çekilmesine Sıcaklığın Etkisinin Deneysel ve Sayısal Olarak Araştırılması

Year 2018, Volume: 21 Issue: 1, 193 - 199, 31.03.2018
https://doi.org/10.2339/politeknik.392126

Abstract

5000 serisi Al-Mg alaşımları,
süneklik, iyi kaynak edilebilirlik, yüksek mukavemet ve düşük ağırlık
özelliklerinden dolayı geniş bir uygulama alanına sahiptirler. Bununla birlikte
bu alaşımların oda sıcaklığında şekillendirilmesi mikroyapılarından dolayı çelik
saclara nazaran zordur. Bu problemlerin üstesinden gelmenin en etkili yolu ılık
şekillendirmedir. Bu çalışmada, şekillendirme sıcaklığının limit çekme oranı,
ıstampa kuvveti, et kalınlığı, mikrosertlik ve gerilmeye etkisi deneysel ve
sayısal olarak araştırılmıştır. Deneyler 25oC, 100oC, 175oC
ve 250oC sıcaklıklarında, 3600 N baskı plakası kuvvetinde
gerçekleştirilmiştir. Yapılan çalışmalar sonucunda sıcaklığın artması ile et
kalınlığı değişiminin daha homojen hale geldiği, limit çekme oranının arttığı,
mikrosertlik, gerilme ve ıstampa kuvvetinin azaldığı belirlenmiştir. Sonlu
elemanlar yöntemi (SEY) ile elde edilen sayısal sonuçların deneysel veriler ile
elde edilen sonuçlara yakın oldukları gözlenmiştir. 

References

  • [1] Seçgin O. and Savaş V.,. “An experimental investigation of forming load and side-wall thickness obtained by a new deep drawing die”, Int J. Mater Form, 3:209–213, (2010).
  • [2] Özek C. and Ünal E., “The effect of die/blank holder angles on limit drawing ratio and wall thickness in deep drawing of square cups”, Journal of the Faculty of Engineering and Architecture of Gazi University, Vol 27, No 3, 615-622, (2012).
  • [3] Greene D.L. and DiCicco, J.,. “Engineering-economic analyses of automotive fuel economy potential in the United States”. ORNL/TM-2000/26, Oak Ridge National Laboratory, Oak Ridge, TN, (2000).
  • [4] Panicker S.S., Singh H.G., Panda S. K. and Dashwood R., “Characterization of tensile properties, limiting strains, and deep drawing behavior of AA5754-H22 sheet at elevated temperature”, Journal of Materials Engineering and Performance, 24:4267–4282, (2015).
  • [5] Abedrabbo N., Pourboghrat F. and Carsley J., “Forming of AA5182-O and AA5754-O at elevated temperatures using coupled thermo-mechanical finite element models”, International Journal of Plasticity 23:841–875, (2007).
  • [6] Laurent H., Coër J., Manach P.Y., Oliveira M.C. and Menezes L.F., “Experimental and numerical studies on the warm deep drawing of an Al–Mg alloy”, International Journal of Mechanical Sciences, 93: 59–72, (2015).
  • [7] Özturk F., Pekel H. ve Halkacı H.S., “The effect of strain-rate sensitivity on formability of AA 5754-O at cold and warm temperatures”, Journal of Materials Engineering and Performance, 20: 77–81, (2011).
  • [8] Halim H., Wilkinson D.S. and Niewczas M., “The Portvein-Le Chatelier(PLC) effect and shear band formation in an AA5754 alloy”, Acta Mater., 55: 4151–4160, (2007).
  • [9] Laurent H., Coër J., Grèze R., Manach, P.Y., Andrade-Campos A., Oliveira M.C. and Menezes L.F., “Mechanical behaviour and springback study of an aluminium alloy in warm forming conditions”, International Scholarly Research Network ISRN Mechanical Engineering, ID:381615, (2011).
  • [10] Tebbe P.A. and Kridli G.T., “Warm forming of aluminium alloys: an overview and future directions,” International Journal of Materials and Product Technology, 21(1-3): 24–40, (2004).
  • [11] Laurent H., Grèze R., Manach P.Y. and Thuillier S., “Influence of constitutive model in springback prediction using the split-ring test,” International Journal of Mechanical Sciences, 51(3): 233–245, (2009).
  • [12] Toros S., Ozturk F. and Kacar I., “Review of warm forming of aluminum-magnesium alloys”, Journal of Materials Processing Technology, 207: 1–12, (2008).
  • [13] Ren L.M., Zhang S.H., Palumbo G., Sorgente D. and Tricarico L., “Numerical simulation on warm deep drawing of magnesium alloy AZ31 sheets”, Materials Science and Engineering A, 499: 40–44, (2009).
  • [14] Erdin M.E., Aykul H. and Tunalıoğlu Ş., “Forming of high strength/low formability metal sheets at elevated temperatures”, Mathematical and Computational Applications, 10(3): 331-340, (2005).
  • [15] Kotkunde N., Deole A.D., Gupta A.K., Singh S.K., “Comparative study of constitutive modeling for Ti-6Al-4V alloy at low strain rates and elevated temperatures”, Materials and Design, 55: 999–1005, (2014).
  • [16] Samantaray D., Mandal S. and Bhaduri A.K., “A comparative study on Johnson Cook, modified Zerilli–Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr–1Mo steel”, Comput Mater Sci, 47, 568–576, (2009).
  • [17] Dutton T., Mohamed M. and Lin J., “Simulation of warm forming of aluminium AA5754 for automotive panels”, 12th International LS-DYNA User Conference, (2012).
  • [18] Abedrabbo N., Pourboghrat F. and Carsley J., “Forming of aluminum alloys at elevated temperatures - Part 2: Numerical modeling and experimental verification”, Int. J. Plast., 22: 342-373, (2006).
  • [19] van den Boogaard A., “Thermally enhanced forming of aluminum sheet modeling and experiments”, Ph.D. thesis, Twente University, (2002).
  • [20] Bolt P.J, Lamboo N.A.P.M. qnd Rozier P.J.C.M., “Feasibility of warm drawing of aluminum products”, J Mater Proc Technol, 115(1): 118–21, (2001).
  • [21] Taşdemir V., “Açılı derin çekme kalıplarında sıcaklığın limit çekme oranına etkisinin araştırılması”, Doktora tezi, Fırat Ünv. Fen Bilimleri Enstitüsü, (2016).
  • [22] Cotterell M., Schambergerova J. and Ziegelheim J., “Dependence of micro-hardness on deformation of deep-drawing steel sheets”, Journal of Materials Processing Technology, 124(3): 293–296, (2002).

Experimental and Numerical Investigation of the Effect of Temperature on Deep Drawing of Aluminum Alloy

Year 2018, Volume: 21 Issue: 1, 193 - 199, 31.03.2018
https://doi.org/10.2339/politeknik.392126

Abstract

5000 series of Al-Mg alloys have found very wide
application areas due to their ductility, good weldability, high strength and
low weight properties. However, forming of these alloys is more difficult than
steel sheets at room temperature due to their microstructure. The most
effective way to overcome these problems is the warm forming. In this study,
the effect of forming temperature on limit drawing ratio, punch force, wall
thickness, microhardness and stress of cup were investigated experimentally and
numerically. The experiments were conducted at 25°C, 100°C, 175°C, and 250°C
temperatures under 3600 N blank holder force. 
As a result of the studies, it was determined that an increase in
forming temperature led to more homogeneous distribution of wall thickness,
increase of limit drawing ratio, decrease of microhardness, stress and punch
forces. The finite element analysis (FEA) model results were also in a good
agreement with the experimental results. 

References

  • [1] Seçgin O. and Savaş V.,. “An experimental investigation of forming load and side-wall thickness obtained by a new deep drawing die”, Int J. Mater Form, 3:209–213, (2010).
  • [2] Özek C. and Ünal E., “The effect of die/blank holder angles on limit drawing ratio and wall thickness in deep drawing of square cups”, Journal of the Faculty of Engineering and Architecture of Gazi University, Vol 27, No 3, 615-622, (2012).
  • [3] Greene D.L. and DiCicco, J.,. “Engineering-economic analyses of automotive fuel economy potential in the United States”. ORNL/TM-2000/26, Oak Ridge National Laboratory, Oak Ridge, TN, (2000).
  • [4] Panicker S.S., Singh H.G., Panda S. K. and Dashwood R., “Characterization of tensile properties, limiting strains, and deep drawing behavior of AA5754-H22 sheet at elevated temperature”, Journal of Materials Engineering and Performance, 24:4267–4282, (2015).
  • [5] Abedrabbo N., Pourboghrat F. and Carsley J., “Forming of AA5182-O and AA5754-O at elevated temperatures using coupled thermo-mechanical finite element models”, International Journal of Plasticity 23:841–875, (2007).
  • [6] Laurent H., Coër J., Manach P.Y., Oliveira M.C. and Menezes L.F., “Experimental and numerical studies on the warm deep drawing of an Al–Mg alloy”, International Journal of Mechanical Sciences, 93: 59–72, (2015).
  • [7] Özturk F., Pekel H. ve Halkacı H.S., “The effect of strain-rate sensitivity on formability of AA 5754-O at cold and warm temperatures”, Journal of Materials Engineering and Performance, 20: 77–81, (2011).
  • [8] Halim H., Wilkinson D.S. and Niewczas M., “The Portvein-Le Chatelier(PLC) effect and shear band formation in an AA5754 alloy”, Acta Mater., 55: 4151–4160, (2007).
  • [9] Laurent H., Coër J., Grèze R., Manach, P.Y., Andrade-Campos A., Oliveira M.C. and Menezes L.F., “Mechanical behaviour and springback study of an aluminium alloy in warm forming conditions”, International Scholarly Research Network ISRN Mechanical Engineering, ID:381615, (2011).
  • [10] Tebbe P.A. and Kridli G.T., “Warm forming of aluminium alloys: an overview and future directions,” International Journal of Materials and Product Technology, 21(1-3): 24–40, (2004).
  • [11] Laurent H., Grèze R., Manach P.Y. and Thuillier S., “Influence of constitutive model in springback prediction using the split-ring test,” International Journal of Mechanical Sciences, 51(3): 233–245, (2009).
  • [12] Toros S., Ozturk F. and Kacar I., “Review of warm forming of aluminum-magnesium alloys”, Journal of Materials Processing Technology, 207: 1–12, (2008).
  • [13] Ren L.M., Zhang S.H., Palumbo G., Sorgente D. and Tricarico L., “Numerical simulation on warm deep drawing of magnesium alloy AZ31 sheets”, Materials Science and Engineering A, 499: 40–44, (2009).
  • [14] Erdin M.E., Aykul H. and Tunalıoğlu Ş., “Forming of high strength/low formability metal sheets at elevated temperatures”, Mathematical and Computational Applications, 10(3): 331-340, (2005).
  • [15] Kotkunde N., Deole A.D., Gupta A.K., Singh S.K., “Comparative study of constitutive modeling for Ti-6Al-4V alloy at low strain rates and elevated temperatures”, Materials and Design, 55: 999–1005, (2014).
  • [16] Samantaray D., Mandal S. and Bhaduri A.K., “A comparative study on Johnson Cook, modified Zerilli–Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr–1Mo steel”, Comput Mater Sci, 47, 568–576, (2009).
  • [17] Dutton T., Mohamed M. and Lin J., “Simulation of warm forming of aluminium AA5754 for automotive panels”, 12th International LS-DYNA User Conference, (2012).
  • [18] Abedrabbo N., Pourboghrat F. and Carsley J., “Forming of aluminum alloys at elevated temperatures - Part 2: Numerical modeling and experimental verification”, Int. J. Plast., 22: 342-373, (2006).
  • [19] van den Boogaard A., “Thermally enhanced forming of aluminum sheet modeling and experiments”, Ph.D. thesis, Twente University, (2002).
  • [20] Bolt P.J, Lamboo N.A.P.M. qnd Rozier P.J.C.M., “Feasibility of warm drawing of aluminum products”, J Mater Proc Technol, 115(1): 118–21, (2001).
  • [21] Taşdemir V., “Açılı derin çekme kalıplarında sıcaklığın limit çekme oranına etkisinin araştırılması”, Doktora tezi, Fırat Ünv. Fen Bilimleri Enstitüsü, (2016).
  • [22] Cotterell M., Schambergerova J. and Ziegelheim J., “Dependence of micro-hardness on deformation of deep-drawing steel sheets”, Journal of Materials Processing Technology, 124(3): 293–296, (2002).
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Cebeli Özek This is me

Vedat Taşdemir This is me

Publication Date March 31, 2018
Submission Date February 3, 2017
Published in Issue Year 2018 Volume: 21 Issue: 1

Cite

APA Özek, C., & Taşdemir, V. (2018). Alüminyum Alaşımının Derin Çekilmesine Sıcaklığın Etkisinin Deneysel ve Sayısal Olarak Araştırılması. Politeknik Dergisi, 21(1), 193-199. https://doi.org/10.2339/politeknik.392126
AMA Özek C, Taşdemir V. Alüminyum Alaşımının Derin Çekilmesine Sıcaklığın Etkisinin Deneysel ve Sayısal Olarak Araştırılması. Politeknik Dergisi. March 2018;21(1):193-199. doi:10.2339/politeknik.392126
Chicago Özek, Cebeli, and Vedat Taşdemir. “Alüminyum Alaşımının Derin Çekilmesine Sıcaklığın Etkisinin Deneysel Ve Sayısal Olarak Araştırılması”. Politeknik Dergisi 21, no. 1 (March 2018): 193-99. https://doi.org/10.2339/politeknik.392126.
EndNote Özek C, Taşdemir V (March 1, 2018) Alüminyum Alaşımının Derin Çekilmesine Sıcaklığın Etkisinin Deneysel ve Sayısal Olarak Araştırılması. Politeknik Dergisi 21 1 193–199.
IEEE C. Özek and V. Taşdemir, “Alüminyum Alaşımının Derin Çekilmesine Sıcaklığın Etkisinin Deneysel ve Sayısal Olarak Araştırılması”, Politeknik Dergisi, vol. 21, no. 1, pp. 193–199, 2018, doi: 10.2339/politeknik.392126.
ISNAD Özek, Cebeli - Taşdemir, Vedat. “Alüminyum Alaşımının Derin Çekilmesine Sıcaklığın Etkisinin Deneysel Ve Sayısal Olarak Araştırılması”. Politeknik Dergisi 21/1 (March 2018), 193-199. https://doi.org/10.2339/politeknik.392126.
JAMA Özek C, Taşdemir V. Alüminyum Alaşımının Derin Çekilmesine Sıcaklığın Etkisinin Deneysel ve Sayısal Olarak Araştırılması. Politeknik Dergisi. 2018;21:193–199.
MLA Özek, Cebeli and Vedat Taşdemir. “Alüminyum Alaşımının Derin Çekilmesine Sıcaklığın Etkisinin Deneysel Ve Sayısal Olarak Araştırılması”. Politeknik Dergisi, vol. 21, no. 1, 2018, pp. 193-9, doi:10.2339/politeknik.392126.
Vancouver Özek C, Taşdemir V. Alüminyum Alaşımının Derin Çekilmesine Sıcaklığın Etkisinin Deneysel ve Sayısal Olarak Araştırılması. Politeknik Dergisi. 2018;21(1):193-9.