Research Article
BibTex RIS Cite

İnşaat Proje İmalatlarında Artırılmış Gerçeklik Teknolojisi Uygulamaları

Year 2018, Volume: 21 Issue: 2, 379 - 385, 01.06.2018
https://doi.org/10.2339/politeknik.385916

Abstract

Bilgi
teknolojilerine yeni bir bakış açısı getiren artırılmış gerçeklik, gerçek
dünyanın sanal dünyadan gelen bilgi ile zenginleştirilmesidir. Artırılmış
gerçeklik,
gelecekte inşaat projeleri uygulamalarına önemli katkılar sağlayacak
yenilikçi teknolojilerden biridir.
Bu çalışmada, artırılmış gerçeklik teknolojisi kullanılarak inşaat
projelerinde çalışan işçi, ekipman operatörü, mühendis ve yöneticilerin
yapımını veya kontrolünü üstlendikleri imalat işlerinin baştan sona aşamalar
halinde bilgilendirildiği bir sistem geliştirilmiştir. Akıllı gözlük ile
oluşturulan sistemde kullanıcılar, yapımını ya da kontrolünü üstlendikleri
işlerle ilgili eğitim ve yapım yöntemlerine şantiyede işin başındayken ulaşarak
imalat ile ilgili gerekli bilgilere anında erişebilecektir. Bu şekilde hatalı
imalat yapmaktan ya da imalatın doğrusunu öğrenmek için zaman ve para
harcamaktan sakınmış olacaktır. Sistem, tuğla duvar imalatının aşamaları
kullanılarak test edilmiştir. Sistemin inşaat proje imalatlarının kalitesini
artırabileceği d
olayısıyla sektöre önemli katkılar sağlayacağı öngörülmektedir.  

References

  • [1] Gordon C., Akıncı B. and Garrett J.H., ‘‘Formalism for construction inspection planning: requirements and process concept’’, Journal of Computing in Civil Engineering, 21(1): 29-38, (2007).
  • [2] İnel M., Özmen H.B. and Akyol E., ‘‘Observations on the building damages after 19 May 2011 Simav (Turkey) earthquake’’, Bulletin of Earthquake Engineering, 11: 255–283, (2013).
  • [3] Wang X. and Dunston P.S., ‘‘Design, strategies, and issues towards an augmented reality-based construction training platform’’, ITcon, 12: 363-380, (2007).
  • [4] Tanyer, A.M. and Pekeriçli M.K., ‘‘İnşaat sektörü için bilgi teknolojilerindeki son gelişmeler’’, Türkiye Mühendislik Haberleri, 451, (2008).
  • [5] Söylemez R., ‘‘Sanal gerçeklik nedir?’’, https://vrturkiye.net/, (2015).
  • [6] Ünal F.C., ‘‘Artırılmış gerçeklik teknolojisinin kullanımıyla mimarlık rehberi: Eindhoven kenti üzerinden değerlendirilmesi’’, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, (2013).
  • [7] Bonsor K., ‘‘How will augmented reality work? How stuff works’’, www.howstuffworks.com/augmented-reality.htm/, (2001).
  • [8] Kuo C., Jeng T. and Yang I., ‘‘An invisible head marker tracking system for indoor mobile augmented reality’’, Automation in Construction, 33: 104-115, (2013).
  • [9] Volkswagen, ‘‘MARTA-Innovative Service Support Tool for the Volkswagen XL1’’, http://www.volkswagenag.com, (2016).
  • [10] Chi H.L., Kang S.C. and Wang X., ‘‘Research trends and opportunities of augmented reality applications in architecture, engineering, and construction’’, Automation in Construction, 33: 116-122, (2013).
  • [11] Agarwal S., “Review on application of augmented reality in civil engineering”, International Conference on Inter Disciplinary Research in Engineering and Technology, 68-71, (2016).
  • [12] Behzadan A.H. and Kamat V.R., ‘‘Automated generation of operations level construction animations in outdoor augmented reality’’, Computing in Civil Engineering, 23(6): 405-417, (2009).
  • [13] Zhao D., Thabet W., McCoy A. and Klienr, B., ‘‘Managing electrocution hazards in the US construction industry using VR simulation and cloud technology’’, eWork and eBusiness in Architecture, Engineering and Construction, 759-764, (2012).
  • [14] Chen A., Golparvar-Fard M. and Kleiner B., ‘‘Saves: A safety training augmented virtuality environment for construction hazard recognition and severity identification’’, Proceedings of the 13th International Conference on Construction Applications of Virtual Reality, 30-31 Ekim, Londra, Birleşik Krallık, (2013).
  • [15] Tsai M.K., ‘‘Streamlining information representation during construction accidents’’, KSCE Journal of Civil Engineering, 18(7): 1945-1954, (2014).
  • [16] Behzadan A.H. and Kamat V.R., ‘‘Enabling discovery-based learning in construction using telepresent augmented reality’’, Automation in Construction, 33: 3-10, (2013).
  • [17] Hammad A., Garrett J.H.Jr. and Karimi H.A., ‘‘Potential of mobile augmented reality for infrastructure field tasks’’, Proc., Applications of Advanced Technology in Transportation Conf. ASCE, Cambridge, 456-472, (2002).
  • [18] Kim B., Kim C. and Kim H., ‘‘Interactive modeler for construction equipment operation using augmented reality’’, Journal of Computing in Civil Engineering, ASCE, 26(3): 331-341, (2012).
  • [19] Lee S. and Akın Ö., ‘‘Augmented reality-based computational fieldwork support for equipment operations and maintenance’’, Automation in Construction, 20: 338-352, (2011).
  • [20] Shin D.H. and Dunston P.S., ‘‘Identification of application areas for augmented reality in industrial construction based on technology suitability’’, Automation in Construction, 17(7): 882-894, (2008).
  • [21] Shin D.H. and Dunston P.S., ‘‘Technology development needs for advancing augmented reality-based inspection’’, Automation in Construction, 19(2): 169-182, (2010).
  • [22] Park C.S. and Kim H.J., ‘‘A framework for construction safety management and visualization system’’, Automation in Construction, 33: 95-103, (2013).
  • [23] Shin D.H., Park J., Woo S. and Jang W.S., ‘‘Representations for imagining the scene of non-existing buildings in an existing environment, Automation in Construction, 33: 86-94, (2013).
  • [24] Yang M.D., Chao C.F., Huang K.S., Lu L.Y. and Chen Y.P., ‘‘Image-based 3D scene reconstruction and exploration in augmented reality, Automation in Construction, 33: 48-60, (2013).
  • [25] Wang X., Love P.E.D., Kim M.J., Park C.S., Sing C.P. and Hou L., ‘‘A conceptual framework for integrating building information modeling with augmented reality’’, Automation in Construction, 34: 37-44, (2013).
  • [26] Irizarry J., Gheisari M., Williams G. and Walker B.N., ‘‘Info SPOT: a mobile augmented reality methods for accessing building information through a situation awareness approach’’, Automation in Construction, 33: 11-23, (2013).
  • [27] Wang X., ‘‘Using augmented reality to plan virtual construction worksite’’, International Journal of Advanced Robotic Systems, 4(4): 501-512, (2007).
  • [28] Kwon O.S., Park C.S. and Lim C.R., ‘‘A defect management system for reinforced concrete work utilizing BIM, image-matching and augmented reality’’, Automation in Construction, 46: 74-81, (2014).
  • [29] Wang X., Kim M.J., Love P.E.D. and Kang S.C., ‘‘Augmented reality in built environment: classification and implications for future research’’, Automation in Construction, 32: 1-13, (2013).
  • [30] MEGEP-Mesleki Eğitim ve Öğretim Sisteminin Güçlendirilmesi Projesi, ‘‘İnşaat teknolojisi, duvar’’, Milli Eğitim Bakanlığı, Ankara, (2007).
  • [31] Milli Eğitim Bakanlığı, ‘‘Mesleki gelişim, iş güvenliği ve işçi sağlığı’’, Milli Eğitim Bakanlığı, Ankara, (2014).
  • [32] Epson, Moverio BT-200 Smart Glasses, http://www.epson.com, (2016).

Augmented Reality Technology Applications in Construction Project Activities

Year 2018, Volume: 21 Issue: 2, 379 - 385, 01.06.2018
https://doi.org/10.2339/politeknik.385916

Abstract

Augmented
reality, which brings a new perspective into information technologies, can be
defined in the simplest form as augmenting the real world with information from
the virtual world. Augmented reality is one of the innovative technologies that
will provide significant benefits to construction project applications in the
future. In this study, an augmented reality system is developed for improving
construction project activities. This system shows the workers, equipment
operators, engineers and managers how to perform the tasks of the specific job,
step by step, with relevant supplemental information. Using smart glass in the
system, the users will be able to reach the training and building methods about
the relevant project activities. By this way, construction failures and
spending money and time to learn the correct methodology for the execution of
the activity will be avoided. The system is tested using the brick wall
production phases. It has been proposed
that the system can improve the quality of construction activities and thus,
provide significant contributions to the construction industry.

References

  • [1] Gordon C., Akıncı B. and Garrett J.H., ‘‘Formalism for construction inspection planning: requirements and process concept’’, Journal of Computing in Civil Engineering, 21(1): 29-38, (2007).
  • [2] İnel M., Özmen H.B. and Akyol E., ‘‘Observations on the building damages after 19 May 2011 Simav (Turkey) earthquake’’, Bulletin of Earthquake Engineering, 11: 255–283, (2013).
  • [3] Wang X. and Dunston P.S., ‘‘Design, strategies, and issues towards an augmented reality-based construction training platform’’, ITcon, 12: 363-380, (2007).
  • [4] Tanyer, A.M. and Pekeriçli M.K., ‘‘İnşaat sektörü için bilgi teknolojilerindeki son gelişmeler’’, Türkiye Mühendislik Haberleri, 451, (2008).
  • [5] Söylemez R., ‘‘Sanal gerçeklik nedir?’’, https://vrturkiye.net/, (2015).
  • [6] Ünal F.C., ‘‘Artırılmış gerçeklik teknolojisinin kullanımıyla mimarlık rehberi: Eindhoven kenti üzerinden değerlendirilmesi’’, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, (2013).
  • [7] Bonsor K., ‘‘How will augmented reality work? How stuff works’’, www.howstuffworks.com/augmented-reality.htm/, (2001).
  • [8] Kuo C., Jeng T. and Yang I., ‘‘An invisible head marker tracking system for indoor mobile augmented reality’’, Automation in Construction, 33: 104-115, (2013).
  • [9] Volkswagen, ‘‘MARTA-Innovative Service Support Tool for the Volkswagen XL1’’, http://www.volkswagenag.com, (2016).
  • [10] Chi H.L., Kang S.C. and Wang X., ‘‘Research trends and opportunities of augmented reality applications in architecture, engineering, and construction’’, Automation in Construction, 33: 116-122, (2013).
  • [11] Agarwal S., “Review on application of augmented reality in civil engineering”, International Conference on Inter Disciplinary Research in Engineering and Technology, 68-71, (2016).
  • [12] Behzadan A.H. and Kamat V.R., ‘‘Automated generation of operations level construction animations in outdoor augmented reality’’, Computing in Civil Engineering, 23(6): 405-417, (2009).
  • [13] Zhao D., Thabet W., McCoy A. and Klienr, B., ‘‘Managing electrocution hazards in the US construction industry using VR simulation and cloud technology’’, eWork and eBusiness in Architecture, Engineering and Construction, 759-764, (2012).
  • [14] Chen A., Golparvar-Fard M. and Kleiner B., ‘‘Saves: A safety training augmented virtuality environment for construction hazard recognition and severity identification’’, Proceedings of the 13th International Conference on Construction Applications of Virtual Reality, 30-31 Ekim, Londra, Birleşik Krallık, (2013).
  • [15] Tsai M.K., ‘‘Streamlining information representation during construction accidents’’, KSCE Journal of Civil Engineering, 18(7): 1945-1954, (2014).
  • [16] Behzadan A.H. and Kamat V.R., ‘‘Enabling discovery-based learning in construction using telepresent augmented reality’’, Automation in Construction, 33: 3-10, (2013).
  • [17] Hammad A., Garrett J.H.Jr. and Karimi H.A., ‘‘Potential of mobile augmented reality for infrastructure field tasks’’, Proc., Applications of Advanced Technology in Transportation Conf. ASCE, Cambridge, 456-472, (2002).
  • [18] Kim B., Kim C. and Kim H., ‘‘Interactive modeler for construction equipment operation using augmented reality’’, Journal of Computing in Civil Engineering, ASCE, 26(3): 331-341, (2012).
  • [19] Lee S. and Akın Ö., ‘‘Augmented reality-based computational fieldwork support for equipment operations and maintenance’’, Automation in Construction, 20: 338-352, (2011).
  • [20] Shin D.H. and Dunston P.S., ‘‘Identification of application areas for augmented reality in industrial construction based on technology suitability’’, Automation in Construction, 17(7): 882-894, (2008).
  • [21] Shin D.H. and Dunston P.S., ‘‘Technology development needs for advancing augmented reality-based inspection’’, Automation in Construction, 19(2): 169-182, (2010).
  • [22] Park C.S. and Kim H.J., ‘‘A framework for construction safety management and visualization system’’, Automation in Construction, 33: 95-103, (2013).
  • [23] Shin D.H., Park J., Woo S. and Jang W.S., ‘‘Representations for imagining the scene of non-existing buildings in an existing environment, Automation in Construction, 33: 86-94, (2013).
  • [24] Yang M.D., Chao C.F., Huang K.S., Lu L.Y. and Chen Y.P., ‘‘Image-based 3D scene reconstruction and exploration in augmented reality, Automation in Construction, 33: 48-60, (2013).
  • [25] Wang X., Love P.E.D., Kim M.J., Park C.S., Sing C.P. and Hou L., ‘‘A conceptual framework for integrating building information modeling with augmented reality’’, Automation in Construction, 34: 37-44, (2013).
  • [26] Irizarry J., Gheisari M., Williams G. and Walker B.N., ‘‘Info SPOT: a mobile augmented reality methods for accessing building information through a situation awareness approach’’, Automation in Construction, 33: 11-23, (2013).
  • [27] Wang X., ‘‘Using augmented reality to plan virtual construction worksite’’, International Journal of Advanced Robotic Systems, 4(4): 501-512, (2007).
  • [28] Kwon O.S., Park C.S. and Lim C.R., ‘‘A defect management system for reinforced concrete work utilizing BIM, image-matching and augmented reality’’, Automation in Construction, 46: 74-81, (2014).
  • [29] Wang X., Kim M.J., Love P.E.D. and Kang S.C., ‘‘Augmented reality in built environment: classification and implications for future research’’, Automation in Construction, 32: 1-13, (2013).
  • [30] MEGEP-Mesleki Eğitim ve Öğretim Sisteminin Güçlendirilmesi Projesi, ‘‘İnşaat teknolojisi, duvar’’, Milli Eğitim Bakanlığı, Ankara, (2007).
  • [31] Milli Eğitim Bakanlığı, ‘‘Mesleki gelişim, iş güvenliği ve işçi sağlığı’’, Milli Eğitim Bakanlığı, Ankara, (2014).
  • [32] Epson, Moverio BT-200 Smart Glasses, http://www.epson.com, (2016).
There are 32 citations in total.

Details

Journal Section Research Article
Authors

Serkan Kıvrak

Gökhan Arslan This is me

Publication Date June 1, 2018
Published in Issue Year 2018 Volume: 21 Issue: 2

Cite

APA Kıvrak, S., & Arslan, G. (2018). İnşaat Proje İmalatlarında Artırılmış Gerçeklik Teknolojisi Uygulamaları. Politeknik Dergisi, 21(2), 379-385. https://doi.org/10.2339/politeknik.385916
AMA Kıvrak S, Arslan G. İnşaat Proje İmalatlarında Artırılmış Gerçeklik Teknolojisi Uygulamaları. Politeknik Dergisi. June 2018;21(2):379-385. doi:10.2339/politeknik.385916
Chicago Kıvrak, Serkan, and Gökhan Arslan. “İnşaat Proje İmalatlarında Artırılmış Gerçeklik Teknolojisi Uygulamaları”. Politeknik Dergisi 21, no. 2 (June 2018): 379-85. https://doi.org/10.2339/politeknik.385916.
EndNote Kıvrak S, Arslan G (June 1, 2018) İnşaat Proje İmalatlarında Artırılmış Gerçeklik Teknolojisi Uygulamaları. Politeknik Dergisi 21 2 379–385.
IEEE S. Kıvrak and G. Arslan, “İnşaat Proje İmalatlarında Artırılmış Gerçeklik Teknolojisi Uygulamaları”, Politeknik Dergisi, vol. 21, no. 2, pp. 379–385, 2018, doi: 10.2339/politeknik.385916.
ISNAD Kıvrak, Serkan - Arslan, Gökhan. “İnşaat Proje İmalatlarında Artırılmış Gerçeklik Teknolojisi Uygulamaları”. Politeknik Dergisi 21/2 (June 2018), 379-385. https://doi.org/10.2339/politeknik.385916.
JAMA Kıvrak S, Arslan G. İnşaat Proje İmalatlarında Artırılmış Gerçeklik Teknolojisi Uygulamaları. Politeknik Dergisi. 2018;21:379–385.
MLA Kıvrak, Serkan and Gökhan Arslan. “İnşaat Proje İmalatlarında Artırılmış Gerçeklik Teknolojisi Uygulamaları”. Politeknik Dergisi, vol. 21, no. 2, 2018, pp. 379-85, doi:10.2339/politeknik.385916.
Vancouver Kıvrak S, Arslan G. İnşaat Proje İmalatlarında Artırılmış Gerçeklik Teknolojisi Uygulamaları. Politeknik Dergisi. 2018;21(2):379-85.