Araştırma Makalesi
BibTex RIS Kaynak Göster

Yüksek Fırın Cüruf Katkılı Çimento Pastalarının Elektriksel Özdirençlerinin Araştırılması

Yıl 2018, Cilt: 21 Sayı: 2, 257 - 264, 01.06.2018
https://doi.org/10.2339/politeknik.403970

Öz

Bu
çalışmada çimento pastalarında yüksek fırın cürufu içeriği ve su/çimento
oranının elektriksel öz direnç üzerindeki etkisi araştırılmıştır. Farklı
su/çimento oranlarında ve farklı oranda bağlayıcı içeren karışımlar
hazırlanmıştır.  Karışımlarda çimento
yerine ağırlıkça %0, %10, %20, %30 oranlarında yüksek fırın cürufu konulmuştur.
Taze haldeki çimento pastalarına kalıp içerisinde elektrik akımı uygulanmış,
ölçümler oda sıcaklığında yapılmıştır. Elektrik akımı uygulanmış ve elektrik
akımı uygulanmamış numunelerdeki hidratasyon zamanı ile elektriksel öz direnç
arasındaki farklar araştırılmıştır. Sonuç olarak, çimento pastalarına yüksek
oranda yüksek fırın cürufu konulması ve elektrik akımı uygulanması ile priz
süresi kısalmaktadır. 

Kaynakça

  • [1] Öner A., Yıldırım T. “Öğütülmüş yüksek fırın cürufu içeren ve içermeyen betonlarda kırmataş kumu içeriğinin beton özeliklerine etkisi”, Deprem Sempozyumu Kocaeli, Kocaeli, (2005).
  • [2] Tokyay M., Erdoğdu K., “Cüruflar ve curuflu çimentolar”, Türkiye Çimento Müstahsilleri Birliği, Ankara, (2002).
  • [3] ACI 233.R-95, “Ground granulated blast-furnace slag as a cementitious constituent in concrete reported by ACI committe 233, American Concrete Institude, Detroit, Michigan.
  • [4] Morsy M.S., “Effect of temperature on electrical conductivity of blended cement pastes”, Cem Concr Res, 29: 603-606, (1999). [5] Yio M.H.N., Phelan J.C., Wong H.S., Buenfeld N.R., “Determining the slag fraction,water/binder ratio and degree of hydration in hardened cement pastes”, Cement and Concrete Research, 56: 171–181, (2014).
  • [6] Backe K.R., Lile O.B. Lyomov,S.K., “Characterizing curing cement slurries by electrical conductivity”, SPE Drilling & Completion, 201-207, (2001).
  • [7] Whittington H.W., McCart J., Forde M.C., “The conduction of electricity through concrete”, Mag Concr Res, 33: 48-60, (1981).
  • [8] Xiao L., Li Z., Wei X., “Selection of superplasticizer in concrete mix design by measuring the early electrical resistivities of pastes”, Cem Concr Comp, 29: 350-356, (2007).
  • [9] Schwarz N., DuBois M., Neithalath N., “Electrical conductivity based characterization of plain and coarse glass powder modified cement pastes”, Cem Concr Comp, 29: 656-666, (2007).
  • [10] Wei X., Li Z., “Early hydration process of portland cement paste by electrical measurement”, J Mater Civ Eng, 18, 1: 99-105, (2006).
  • [11] Buenfeld N.R. Newman J.B.,” Examination of three methods for studying ion diffusion in cement pastes”, Mortars and Concrete. Mater Struc, 20: 3-10, (1987).
  • [12] Li Z., Xiao,L., Wei X., “Determination of concrete setting time using electrical resistivity measurement”, Journal of Mater Civ Eng, 19, 5: 423-427, (2007).
  • [13] Levita G., Marchetti A., Gallone G., Princigallo A., Guerrini G.L., “Electrical properties of fluidified portland cement mixes in the early stage of hydration”, Cem Concr Res, 30: 923-930, (2000).
  • [14] Rajabipour F., Weiss J., “Electrical conductivity of drying cement paste”, Mater Struc, 40: 1143-1160, (2007).
  • [15] Koleva D.A., Copuroglu O., Breugel K.V., Ye G., Wit J.H.W. de., “Electrical resistivity and microstructural properties of concrete materials in conditions of current flow”, Cem Concr Comp, 30: 731-744, (2008).
  • [16] Xiao L., Li Z., “Early-age hydration of fresh concrete monitored by non-contact electrical resistivity measurement”, Cem Concr Res, 38: 312-319, (2008).
  • [17] Chung D.D.L.R., “Damage in cement-based materials studied by electrical resistance measurement”, Mater Sci Eng, 42: 1–40, (2003).
  • [18] Tamaás F.D., Farkas E., Vӧrӧs M., Roy D.M., “Low- frequency electrical conductivity of cement, clinker and clinker mineral pastes”, Cem Concr Res, 17: 340-348, (1987).
  • [19] Zhiyong L., Yunsheng Z., Laibao L., Qian J., “An analytical model for determining the relative electrical resistivity of cement paste and C–S–H Gel, Construction and Building Materials, 48, 647-655, (2013).
  • [20] Maa H., Hou D., Liu J., Li Z., “Estimate the relative electrical conductivity of C–S–H gel from experimental results”, Construction and Building Materials, 71: 392-396, (2014).
  • [21] Topçu İ.B., Uygunuğlu T., Hocaoğlu İ., “Electrical conductivity of setting cement paste with different mineral admixtures”, Construction and Building Materials, 28: 414-420, (2012).
  • [22] Topçu İ.B., Uygunuğlu T., Hocaoğlu İ., “Electrical resistivity of fly ash blended cement paste at hardening state”, Materials Science, 22: 458-462, (2016).
  • [23] EN 197-1/A3, “Cement- Part 1: Compositions and Conformity Criteria for Common Cements, TSE Ankara”, Turkey; [in Turkish] (2010).
  • [24] Salem T.M., “Electrical conductivity and rheological properties of ordinary portland cement–silica fume and calcium hydroxide–silica fume pastes”, Cem Concr Res, 32: 1473-1481 (2002).
  • [25] McCarter W.J., Starrs G., Chrisp T.M., “Electrical conductivity, diffusion, and permeability of portland cement-based mortars, Cem Concr Res, 30: 1395-1400, (2000).
  • [26] Emiroğlu M., Koçak Y., Subaşı S., “Yüksek fırın cürufunun beton fiziksel ve mekanik özelliklerine etkisi”, 6th International Advanced Technologies Symposium, Elazığ, (2011).
  • [27] Heikal M., Morsy M.S., Aiad I., “Effect of treatment temperature on the early hydration characteristics of superplasticized silica fume blended cement pastes”, Cem Concr Res, 35: 680- 687, (2005).

Investigation of Electrical Resistivity of Cement Paste Blended with Blast Furnace Slag

Yıl 2018, Cilt: 21 Sayı: 2, 257 - 264, 01.06.2018
https://doi.org/10.2339/politeknik.403970

Öz

In this study, the effects of blast furnace slag content
and water/cement ratio at cement pastes on the electrical resistivity were
investigated. Admixtures having different water/cement ratios and admixtures
having binder at different dosage levels were prepared. The blast furnace slag was
used in the admixtures by replacing the cement in ratio of 0%, 10%, 20% and 30%
by weight. Electrical current was applied to the fresh cement pastes in the
molds. The measurements were done at room temperature. The differences between electrical
resistivity and hydration time with and without electric current application on
the specimens were investigated.  As a
result, adding blast furnace slag at a high proportion and application of
electrical current to the cement pastes shorten the setting time.

Kaynakça

  • [1] Öner A., Yıldırım T. “Öğütülmüş yüksek fırın cürufu içeren ve içermeyen betonlarda kırmataş kumu içeriğinin beton özeliklerine etkisi”, Deprem Sempozyumu Kocaeli, Kocaeli, (2005).
  • [2] Tokyay M., Erdoğdu K., “Cüruflar ve curuflu çimentolar”, Türkiye Çimento Müstahsilleri Birliği, Ankara, (2002).
  • [3] ACI 233.R-95, “Ground granulated blast-furnace slag as a cementitious constituent in concrete reported by ACI committe 233, American Concrete Institude, Detroit, Michigan.
  • [4] Morsy M.S., “Effect of temperature on electrical conductivity of blended cement pastes”, Cem Concr Res, 29: 603-606, (1999). [5] Yio M.H.N., Phelan J.C., Wong H.S., Buenfeld N.R., “Determining the slag fraction,water/binder ratio and degree of hydration in hardened cement pastes”, Cement and Concrete Research, 56: 171–181, (2014).
  • [6] Backe K.R., Lile O.B. Lyomov,S.K., “Characterizing curing cement slurries by electrical conductivity”, SPE Drilling & Completion, 201-207, (2001).
  • [7] Whittington H.W., McCart J., Forde M.C., “The conduction of electricity through concrete”, Mag Concr Res, 33: 48-60, (1981).
  • [8] Xiao L., Li Z., Wei X., “Selection of superplasticizer in concrete mix design by measuring the early electrical resistivities of pastes”, Cem Concr Comp, 29: 350-356, (2007).
  • [9] Schwarz N., DuBois M., Neithalath N., “Electrical conductivity based characterization of plain and coarse glass powder modified cement pastes”, Cem Concr Comp, 29: 656-666, (2007).
  • [10] Wei X., Li Z., “Early hydration process of portland cement paste by electrical measurement”, J Mater Civ Eng, 18, 1: 99-105, (2006).
  • [11] Buenfeld N.R. Newman J.B.,” Examination of three methods for studying ion diffusion in cement pastes”, Mortars and Concrete. Mater Struc, 20: 3-10, (1987).
  • [12] Li Z., Xiao,L., Wei X., “Determination of concrete setting time using electrical resistivity measurement”, Journal of Mater Civ Eng, 19, 5: 423-427, (2007).
  • [13] Levita G., Marchetti A., Gallone G., Princigallo A., Guerrini G.L., “Electrical properties of fluidified portland cement mixes in the early stage of hydration”, Cem Concr Res, 30: 923-930, (2000).
  • [14] Rajabipour F., Weiss J., “Electrical conductivity of drying cement paste”, Mater Struc, 40: 1143-1160, (2007).
  • [15] Koleva D.A., Copuroglu O., Breugel K.V., Ye G., Wit J.H.W. de., “Electrical resistivity and microstructural properties of concrete materials in conditions of current flow”, Cem Concr Comp, 30: 731-744, (2008).
  • [16] Xiao L., Li Z., “Early-age hydration of fresh concrete monitored by non-contact electrical resistivity measurement”, Cem Concr Res, 38: 312-319, (2008).
  • [17] Chung D.D.L.R., “Damage in cement-based materials studied by electrical resistance measurement”, Mater Sci Eng, 42: 1–40, (2003).
  • [18] Tamaás F.D., Farkas E., Vӧrӧs M., Roy D.M., “Low- frequency electrical conductivity of cement, clinker and clinker mineral pastes”, Cem Concr Res, 17: 340-348, (1987).
  • [19] Zhiyong L., Yunsheng Z., Laibao L., Qian J., “An analytical model for determining the relative electrical resistivity of cement paste and C–S–H Gel, Construction and Building Materials, 48, 647-655, (2013).
  • [20] Maa H., Hou D., Liu J., Li Z., “Estimate the relative electrical conductivity of C–S–H gel from experimental results”, Construction and Building Materials, 71: 392-396, (2014).
  • [21] Topçu İ.B., Uygunuğlu T., Hocaoğlu İ., “Electrical conductivity of setting cement paste with different mineral admixtures”, Construction and Building Materials, 28: 414-420, (2012).
  • [22] Topçu İ.B., Uygunuğlu T., Hocaoğlu İ., “Electrical resistivity of fly ash blended cement paste at hardening state”, Materials Science, 22: 458-462, (2016).
  • [23] EN 197-1/A3, “Cement- Part 1: Compositions and Conformity Criteria for Common Cements, TSE Ankara”, Turkey; [in Turkish] (2010).
  • [24] Salem T.M., “Electrical conductivity and rheological properties of ordinary portland cement–silica fume and calcium hydroxide–silica fume pastes”, Cem Concr Res, 32: 1473-1481 (2002).
  • [25] McCarter W.J., Starrs G., Chrisp T.M., “Electrical conductivity, diffusion, and permeability of portland cement-based mortars, Cem Concr Res, 30: 1395-1400, (2000).
  • [26] Emiroğlu M., Koçak Y., Subaşı S., “Yüksek fırın cürufunun beton fiziksel ve mekanik özelliklerine etkisi”, 6th International Advanced Technologies Symposium, Elazığ, (2011).
  • [27] Heikal M., Morsy M.S., Aiad I., “Effect of treatment temperature on the early hydration characteristics of superplasticized silica fume blended cement pastes”, Cem Concr Res, 35: 680- 687, (2005).
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

İlker Bekir Topçu Bu kişi benim

Tayfun Uygunoğlu Bu kişi benim

İsmail Hocaoğlu

Yayımlanma Tarihi 1 Haziran 2018
Gönderilme Tarihi 10 Ekim 2016
Yayımlandığı Sayı Yıl 2018 Cilt: 21 Sayı: 2

Kaynak Göster

APA Topçu, İ. B., Uygunoğlu, T., & Hocaoğlu, İ. (2018). Yüksek Fırın Cüruf Katkılı Çimento Pastalarının Elektriksel Özdirençlerinin Araştırılması. Politeknik Dergisi, 21(2), 257-264. https://doi.org/10.2339/politeknik.403970
AMA Topçu İB, Uygunoğlu T, Hocaoğlu İ. Yüksek Fırın Cüruf Katkılı Çimento Pastalarının Elektriksel Özdirençlerinin Araştırılması. Politeknik Dergisi. Haziran 2018;21(2):257-264. doi:10.2339/politeknik.403970
Chicago Topçu, İlker Bekir, Tayfun Uygunoğlu, ve İsmail Hocaoğlu. “Yüksek Fırın Cüruf Katkılı Çimento Pastalarının Elektriksel Özdirençlerinin Araştırılması”. Politeknik Dergisi 21, sy. 2 (Haziran 2018): 257-64. https://doi.org/10.2339/politeknik.403970.
EndNote Topçu İB, Uygunoğlu T, Hocaoğlu İ (01 Haziran 2018) Yüksek Fırın Cüruf Katkılı Çimento Pastalarının Elektriksel Özdirençlerinin Araştırılması. Politeknik Dergisi 21 2 257–264.
IEEE İ. B. Topçu, T. Uygunoğlu, ve İ. Hocaoğlu, “Yüksek Fırın Cüruf Katkılı Çimento Pastalarının Elektriksel Özdirençlerinin Araştırılması”, Politeknik Dergisi, c. 21, sy. 2, ss. 257–264, 2018, doi: 10.2339/politeknik.403970.
ISNAD Topçu, İlker Bekir vd. “Yüksek Fırın Cüruf Katkılı Çimento Pastalarının Elektriksel Özdirençlerinin Araştırılması”. Politeknik Dergisi 21/2 (Haziran 2018), 257-264. https://doi.org/10.2339/politeknik.403970.
JAMA Topçu İB, Uygunoğlu T, Hocaoğlu İ. Yüksek Fırın Cüruf Katkılı Çimento Pastalarının Elektriksel Özdirençlerinin Araştırılması. Politeknik Dergisi. 2018;21:257–264.
MLA Topçu, İlker Bekir vd. “Yüksek Fırın Cüruf Katkılı Çimento Pastalarının Elektriksel Özdirençlerinin Araştırılması”. Politeknik Dergisi, c. 21, sy. 2, 2018, ss. 257-64, doi:10.2339/politeknik.403970.
Vancouver Topçu İB, Uygunoğlu T, Hocaoğlu İ. Yüksek Fırın Cüruf Katkılı Çimento Pastalarının Elektriksel Özdirençlerinin Araştırılması. Politeknik Dergisi. 2018;21(2):257-64.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.