Research Article
BibTex RIS Cite

Mars Gezgini Prototipi Merih-2

Year 2018, Volume: 21 Issue: 4, 875 - 885, 01.12.2018
https://doi.org/10.2339/politeknik.385545

Abstract

Merih-2, Özyeğin Üniversitesi Rover
Takımı tarafından University Rover Challenge 2016 ve European Rover Challenge
2016’ya katılmak ve Mars koşullarında görev yapmak için tasarlanan gezgindir.
Sürüş için Merih-2’nin 6 adet özel tasarım tekeri bulunmaktadır. Yüksek çekiş
için bütün tekerler elektrik motorlarıyla tahrik edilmiştir. Gezginin
ilerlerken yön değiştirmesi, ön ve arka tekerlerin beraber yönlerinin
değiştirilmesiyle mümkün kılınmıştır. Tekerlerden en az dördünün yere basmasını
sağlayan bir Külbütör-Boji mekanizması ve bu mekanizmanın dengeleyicisi bir
diferansiyel bulunmaktadır. Merih-2 ayrıca, çevredeki objelerin manipülasyonu
için 4 serbestlik dereceli bir robot kola sahiptir. Bu robotik kola çok
fonksiyonlu bir tutucu takılmış ve tornavida alma, şalterleri açma ve kapama
gibi astronotlara yardım görevlerini yapması planlanmıştır. Bu makalede;
Merih-2’nin tasarım ayrıntıları, üretilen prototipten elde edilen kazanımlar ve
gezginin operasyon ve yaşanan olumsuzlukları ortadan kaldırabilecek öneriler anlatılmaktadır.  

References

  • [1] Lee G. K., “System requirements for planetary rovers” in Proceeding of Sensor Fusion and Aerospace Applications Conf., 70, (1956).
  • [2] JPL and NASA. “Mars Pathfinder-Sojourner Rover,” [Online]. Available: http://www.jpl.nasa.gov/missions/marspathfinder-sojourner-rover/
  • [3] JPL and NASA. “Mars exploration rover-spirit.” [Online]. Available: http://www.jpl.nasa.gov/missions/marsexplorationroverspiritmer
  • [4] JPL and NASA. “Mars exploration rover-opportunity.” [Online]. Available: http://www.jpl.nasa.gov/missions/details.php?id=5909
  • [5] JPL and NASA. “Curiosity Rover.” [Online]. Available: http://www.nasa.gov/mission_pages/msl/index.html
  • [6] UK Mars Society. “UK University Rover Challenge”. [Online]. Available: https://marssoc.uk/ukurc
  • [7] Mars Society. “The University Rover Challenge (URC).” [Online]. Available: http://urc.marssociety.org
  • [8] Mars Society. “European rover challenge 2016.” [Online]. Available: http://roverchallenge.eu/en/
  • [9] NASA. “Revolutionary aerospace systems concepts academic linkage, NASA.” [Online]. Available: http://rascal.nianet.org
  • [10] Mars Society and European Space Foundation.. “European Rover Challenge (ERC) Rules,” [Online]. Available: http://roverchallenge.eu/en/rules-2/
  • [11] Li S., Gao H. and Deng Z., “Mobility performance evaluation of lunar rover and optimization of rocker-bogie suspension parameters,” in 2nd International Symposium on Systems and Control in Aerospace and Astronautics, 1–6, (2008).
  • [12] Ullrich R., A. Goktogan H., and Sukkarieh S., “Design optimization of a mars rover’s rocker-bogie mechanism using genetic algorithms,” in Proceedings from 10th Australian Space Science Conference, 199–210, (2010).
  • [13] Barlas F., “Design of a Mars rover suspension mechanism,” Yüksek Lisans, İzmir Yüksek Teknoloji, (2004).
  • [14] Jordan E., “Mars science laboratory differential restraint : the devil is in the details,” in Proceedings of the 41st Aerospace Mechanisms Symposium. Pasadena, (2012).
  • [15] Çavuşoğlu M. C., Feygin D., and Tendick F., “A critical study of the mechanical and electrical properties of the phantom haptic interface and improvements for high performance control,” Presence: Teleoperators and Virtual Environments, 11: 555–568, (2002).
  • [16] MIT Electric Vehicle Team, "A guide to understanding battery specifications". [Online]. Available: http://web.mit.edu/evt/summary_battery_specifications.pdf
  • [17] Open Source Robotics Foundation. “Open source robot operating system ROS,” [Online]. Available: http://ros.org, (2017).

Mars Rover Prototype Merih-2

Year 2018, Volume: 21 Issue: 4, 875 - 885, 01.12.2018
https://doi.org/10.2339/politeknik.385545

Abstract

Merih-2 is
designed to serve under the Mars conditions and to join the University Rover
Challenge 2016 and the European Rover Challenge 2016 by the Özyeğin University
Rover Team. For locomotion, the Merih-2 has 6 specially designed wheels. All
wheels are driven by electric motors for high traction. The steering of the
rover is provided by changing the directions of the front and rear wheels
together. A Rocker-Bogie Mechanism that allows at least four wheels to keep
ground contact, and a differential that assumes the task of balancing this
mechanism is used. Merih-2 also has a 4-degree-of-freedom robot arm for
manipulating objects in the surroundings. This robotic arm is equipped with a
multifunctional holder and is intended to assist astronauts in tasks such as
tool retrieval, turning on and off of switches. This article describes the
design details of Merih-2 and the gains from the prototype produce. Moreover,
the article focuses on the test results that are obtained at ERC 2016 and
discusses the roadmap for a better prototype.

References

  • [1] Lee G. K., “System requirements for planetary rovers” in Proceeding of Sensor Fusion and Aerospace Applications Conf., 70, (1956).
  • [2] JPL and NASA. “Mars Pathfinder-Sojourner Rover,” [Online]. Available: http://www.jpl.nasa.gov/missions/marspathfinder-sojourner-rover/
  • [3] JPL and NASA. “Mars exploration rover-spirit.” [Online]. Available: http://www.jpl.nasa.gov/missions/marsexplorationroverspiritmer
  • [4] JPL and NASA. “Mars exploration rover-opportunity.” [Online]. Available: http://www.jpl.nasa.gov/missions/details.php?id=5909
  • [5] JPL and NASA. “Curiosity Rover.” [Online]. Available: http://www.nasa.gov/mission_pages/msl/index.html
  • [6] UK Mars Society. “UK University Rover Challenge”. [Online]. Available: https://marssoc.uk/ukurc
  • [7] Mars Society. “The University Rover Challenge (URC).” [Online]. Available: http://urc.marssociety.org
  • [8] Mars Society. “European rover challenge 2016.” [Online]. Available: http://roverchallenge.eu/en/
  • [9] NASA. “Revolutionary aerospace systems concepts academic linkage, NASA.” [Online]. Available: http://rascal.nianet.org
  • [10] Mars Society and European Space Foundation.. “European Rover Challenge (ERC) Rules,” [Online]. Available: http://roverchallenge.eu/en/rules-2/
  • [11] Li S., Gao H. and Deng Z., “Mobility performance evaluation of lunar rover and optimization of rocker-bogie suspension parameters,” in 2nd International Symposium on Systems and Control in Aerospace and Astronautics, 1–6, (2008).
  • [12] Ullrich R., A. Goktogan H., and Sukkarieh S., “Design optimization of a mars rover’s rocker-bogie mechanism using genetic algorithms,” in Proceedings from 10th Australian Space Science Conference, 199–210, (2010).
  • [13] Barlas F., “Design of a Mars rover suspension mechanism,” Yüksek Lisans, İzmir Yüksek Teknoloji, (2004).
  • [14] Jordan E., “Mars science laboratory differential restraint : the devil is in the details,” in Proceedings of the 41st Aerospace Mechanisms Symposium. Pasadena, (2012).
  • [15] Çavuşoğlu M. C., Feygin D., and Tendick F., “A critical study of the mechanical and electrical properties of the phantom haptic interface and improvements for high performance control,” Presence: Teleoperators and Virtual Environments, 11: 555–568, (2002).
  • [16] MIT Electric Vehicle Team, "A guide to understanding battery specifications". [Online]. Available: http://web.mit.edu/evt/summary_battery_specifications.pdf
  • [17] Open Source Robotics Foundation. “Open source robot operating system ROS,” [Online]. Available: http://ros.org, (2017).
There are 17 citations in total.

Details

Subjects Engineering
Journal Section Research Article
Authors

Barış Balcı This is me

Mehmet C. Yıldırım This is me

Özkan Bebek

Publication Date December 1, 2018
Submission Date July 24, 2017
Published in Issue Year 2018 Volume: 21 Issue: 4

Cite

APA Balcı, B., Yıldırım, M. C., & Bebek, Ö. (2018). Mars Gezgini Prototipi Merih-2. Politeknik Dergisi, 21(4), 875-885. https://doi.org/10.2339/politeknik.385545
AMA Balcı B, Yıldırım MC, Bebek Ö. Mars Gezgini Prototipi Merih-2. Politeknik Dergisi. December 2018;21(4):875-885. doi:10.2339/politeknik.385545
Chicago Balcı, Barış, Mehmet C. Yıldırım, and Özkan Bebek. “Mars Gezgini Prototipi Merih-2”. Politeknik Dergisi 21, no. 4 (December 2018): 875-85. https://doi.org/10.2339/politeknik.385545.
EndNote Balcı B, Yıldırım MC, Bebek Ö (December 1, 2018) Mars Gezgini Prototipi Merih-2. Politeknik Dergisi 21 4 875–885.
IEEE B. Balcı, M. C. Yıldırım, and Ö. Bebek, “Mars Gezgini Prototipi Merih-2”, Politeknik Dergisi, vol. 21, no. 4, pp. 875–885, 2018, doi: 10.2339/politeknik.385545.
ISNAD Balcı, Barış et al. “Mars Gezgini Prototipi Merih-2”. Politeknik Dergisi 21/4 (December 2018), 875-885. https://doi.org/10.2339/politeknik.385545.
JAMA Balcı B, Yıldırım MC, Bebek Ö. Mars Gezgini Prototipi Merih-2. Politeknik Dergisi. 2018;21:875–885.
MLA Balcı, Barış et al. “Mars Gezgini Prototipi Merih-2”. Politeknik Dergisi, vol. 21, no. 4, 2018, pp. 875-8, doi:10.2339/politeknik.385545.
Vancouver Balcı B, Yıldırım MC, Bebek Ö. Mars Gezgini Prototipi Merih-2. Politeknik Dergisi. 2018;21(4):875-8.