Research Article
BibTex RIS Cite

Modifiye Edilmiş NACA-0015 Kanat Yapısında Tüberkül Etkisinin Sayısal Analizi

Year 2019, Volume: 22 Issue: 1, 185 - 195, 01.03.2019
https://doi.org/10.2339/politeknik.391800

Abstract

Bu çalışmada, kambur balinanın
aerodinamik özellikleri, NACA-0015 kanat modeline uygulanarak kanat performansı
incelenmiştir. Kambur balinanın avını takip etmesi ve yakalaması esnasındaki
manevra kabiliyetinden ilham alınarak, NACA-0015 kanadının hücum kenarı
bölgesine aynı dalga boyunda (w) ve farklı genlikteki (a) tüberküller
yerleştirilmiştir. Elde edilen 3 farklı modifiyeli NACA-0015 kanadı ile düz
kanat, aerodinamik performans açısından karşılaştırılmıştır. Bu çalışmada
kullanılan modifiye NACA-0015 kanatlarının dalga boyu değeri, chord(veter)  uzunluğunun %16’sı ve genliklerin değeri ise
sırasıyla chord uzunluğunun %0,05, %0,1 ve %0,15’i olarak belirlenmiştir. Kanat
yapıları Solidwoks CAD programında tasarlanmıştır. ANSYS Fluent yazılımında
ortalama Navier-Stokes analiz yönteminde k-epsilon realizable türbülans
modeliyle sayısal olarak analiz edilmiştir. Kanat açıklık oranı (en/boy oranı)
değeri 1,1 seçilmiştir. 7,2x105 Reynolds sayısında, 0° ile 46°
arasındaki hücum açılarında kanat üzerinde analizler yapılmıştır. Sonuçlar
incelendiğinde, 0,05a0,16w (0,05a ve 0,16w) kanadın sürtünme katsayısı (CD)  düz kanatla kıyaslandığında %12,57 daha
düşüktür. İrtifa kaybı(Stall) sonrası hücum açıları için, 0,05a0,16w kanadı ile
düz kanat ortalama kaldırma katsayısı (CL) ve CD değeri
açısından kıyaslandığında 0,5a0,16w kanadı sırasıyla %7,86 ve %9,79 daha yüksek
değerlere sahiptir. Stall sonrasında aerodinamik verim(CL /CD),
0,05a0,16w kanadının, düz kanattan %3,81 daha yüksek olduğu görülmektedir. 

References

  • [1] Yao J., Yuan W., Wang J., Xie J., Zhou H., Peng M. and Sun Y., “Numerical simulation of aerodynamics performance for two dimensional wind turbine airfoils”, Procedia Engineering, 31: 80-86, (2011).
  • [2] Lianbing L., Yuanwei M. and Lina L., “Numerical simulation on aerodynamics performance of wind turbine airfoil’’, World Automation Congress (WAC), Puerto Vallarta/ Mexico, 1-4, (2012).
  • [3] Villalpanda F., M. Reggio, and A. Ilinca, “Assessment of turbulence model for flow simulation around a wind turbine airfoil”, Modeling and Simulation in Engineering, 2011: 1-8, (2011).
  • [4] Duvigneau R. and Visonneau M., “Simulation and optimization of stall control for an airfoil with a synthetic jet”, Aerospace Science and Technology, 10: 279-287, (2006).
  • [5] Siauw W.L., Bonnet J-P., Tensi J., Cordier L., B.R. Noack and Cattafesta L., “ Transient Dynamics of the flow around a NACA 0015 airfoil using fluidic vortex generators”, International Journal of Heat and Fluid Flow, 31: 450-459, (2010).
  • [6] Srinivasan G.R., Ekaterinaris J.A. and McCroskey W. J., “ Evaluation of turbulence model for unsteady flows of an oscillating airfoil”, Computers & Fluids, 24: 833-861, (1995).
  • [7] Ravi H.C., Madhukeshwara N. and Kumarappa S., “ Numerical investigation of flow transition for NACA-4412 airfoil using computatıonal fluid dynamics”, International Journal of Innovative Research in Science Engineering and Technology, 2: 2778-2785, (2013).
  • [8] Deepa M.S., Nithya S.N. and Karthik P., “Numerical simulation of turbulent flow past Stationary NACA 0012 airfoil using FLUENT”, International Journal of Engineering Research & Technology, 2: 1209-1212, (2013).
  • [9] Şahin İ., ve Acır A., “Numerical and Experimental Investigations of Lift and Drag Performances of NACA-0015 Wind Turbine Airfoil’’, International Journal of Materials Mechanics and Manufacturing, 3(1): 22-25, (2015).
  • [10] Khabisi H.M., “The study of streamlines and pressure distribution around a NACA 0015 airfoil’’, The First Conference on the Development of Science and Chemical Industry, Kerman, 1-7, (2017).
  • [11] Saad M.M.M., Bin Mohd S., Zulkafli M.F. and Shibani W.M.E., “numerical analysis for comparison of aerodynamic characteristics of six airfoils’’, AIP Conf. Proc., 1831(1): 20004, (2017).
  • [12] https://tr.wikipedia.org/wiki/Kambur_balina
  • [13]http://consciousbreathadventures.com/humpack-whales-distinctive-features/
  • [14] Fish, F.E. and Battle, J.M., “Hydrodynamics design of humpback whale flipper,” journal of morphology’’, Journal of Morfology, 225: 51-60, (1995).
  • [15] Van Nierop E.A., Alben S., and Brenner M.P., “How bumps on whale flippers delay stall: an aerodynamic model”, Pyhsical Review Letters, 100: 1-4, (2008).
  • [16] Fish F.E., Howle L.E., and Murray M.M., “Hydrodynamic flow control in marine mammals”, Integrative and Comparative Biology, 48: 788-800, (2008).
  • [17] Fish F.E., Weber P.W., Murray M.M. and Howle L.E., “The tubercles on humpback whales’ flippers: application of bio-ınspired technology”, Integrative and Comparative Biology, 51(1): 203-213, (2011).
  • [18] Custodio D. and Henoch C.W., “Aerodynamic characteristics of finite span wings with leading-edge protuberances”, AIAA Journal, 503: 1878-1893, (2015).
  • [19] Miklosovic D.S., Howle L.E. and Fish F.E., “Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers”, Physics of Fluids ,16: 39-42, (2004).
  • [20] Fernandes I., Sapkota Y. Mammen T., Rasheed A., Rebello C.L. and Kim Y.H., “Theoretical and experimental investigation of the leading edge tubercles on the wing performance: Aviation Technology”, Aviation Technology Integration and Operations Conference, Los Angeles, USA, 1-41, (2013).
  • [21] Johari H., Henoch C., Custodio D. and Levshin A., “Effects of leading-edge proturbences on airfoil performance’’, AIAA Journal, 45: 2634-2632, (2007).
  • [22] Hasan M.J., Islam M.T., Hassan M.M., “A comparative analysis between NACA 4412 airfoil and it’s modified form with tubercles", 7th BSME International Conference On Thermal Engineering, 20041-20054, Bangladesh, (2017).
  • [23] Pedro H.T.C. and Kobayashi M.H., “Numerical study of stall delay on humpback whale flippers”, 46th AIAA Aerospace Sciences Meeting and Exhibit, Virigina, 584-592, (2008).
  • [24] Rostamzadeh N., Kelso R.M. and Dally B., “A numerical investigation into the effects of Reynolds number on the flow mechanism induced by a tubercled leading edge”, Theoretical and Computational Fluid Dynamics, 31(1): 1-32, (2017).
  • [25] Cai C., Zuo Z., Morimoto M., Maeda T. Kamada, Y. and Liu S., “Two-step stall characteristic of an airfoil with a single leading-edge protuberance”, AIAA Journal, 56(1): 1-14, (2017).
  • [26] http://airfoiltools.com/airfoil/details?airfoil=naca0015-il
  • [27] Ariff M., Salim S.M. and Chea S.C., “Wall Y + approach for dealing with turbulent flow over a surface mounted cube: part 1 – low Reynolds number”, Seventh International Conference on CFD in the Minerals and Process Industries, Australia, 1–6, (2009).
  • [28] https://www.sharcnet.ca/Software/Ansys/16.2.3/en-us/help/flu_ug/flu_ug_mesh_quality.html
  • [29] ANSYS FLUENT 12.0 Theory Gude - 4.4.3 Realzable – Model, http://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node60.htm
  • [30] Izoguchi M.M., Ajikawa Y.K. and Toh H.I., “Aerodynamic characteristics of low-aspect-ratio wings with various aspect ratios in low Reynolds number flows”, Trans. Japan Soc. Aero. Space Sci., 59(2): 56–63, (2016).
  • [31] Wang Y.Y., Hu W.R. and Zhang S.D., “Performance of the bio-inspired leading edge protuberances on a static wing and a pitching wing”, Journal of Hydrodynamics, 26(6): 912-920, (2015).

The Numeric Analysis of Tubercle Effect on Modified NACA-0015 Airfoil

Year 2019, Volume: 22 Issue: 1, 185 - 195, 01.03.2019
https://doi.org/10.2339/politeknik.391800

Abstract

In this study, the aerodynamic characteristics of the
humpback whale were investigated by applying the NACA-0015 model to the wing of
the airfoil. Inspired by the maneuverability during the chase and capture of
the humpback whale, NACA-0015 has placed the tubercles the same wavelength (w)
and different amplitudes (a) in the leading edge region of the wing. The three
different modified wings and the baseline obtained were compared in terms of
aerodynamic performance. The wavelength of the modified wings used in this
study is 16% of the chord length and the values of the amplitudes were
determined as 0,05%, 0,1% and 0,15%, respectively, of the chord length. All
wing structures were designed in Solidworks CAD program. These solid models
were numerically analyzed with the k-epsilon realizable turbulence model in the
average Navier-Stokes analysis method in ANSYS Fluent software. Wing openness
ratio (aspect ratio) value 1,1 was selected. On the 7,2x105 Reynolds
number, analyzes were made on the wing at the attack angle between 0 ° and 46
°. After the examination of the results, it’s found that the baseline has a
higher lift coefficient (CL) than the modified wing before the
stall. The coefficient of friction (CD) of the 0,05a0,16w (0,05a ve
0,16w) is 12,57% lower than that of the baseline. For post-stall angle of
attacks, when 0,05a0,16w wing is compared to baseline average CL and
CD value, the wing of 0,5a0,16w has 7,86% and 9,79% higher values
respectively. After stall, It has seen that the aerodynamic efficiency (CL
/ CD) of 0,05a0,16w is %3,81 higher than the baseline.  

References

  • [1] Yao J., Yuan W., Wang J., Xie J., Zhou H., Peng M. and Sun Y., “Numerical simulation of aerodynamics performance for two dimensional wind turbine airfoils”, Procedia Engineering, 31: 80-86, (2011).
  • [2] Lianbing L., Yuanwei M. and Lina L., “Numerical simulation on aerodynamics performance of wind turbine airfoil’’, World Automation Congress (WAC), Puerto Vallarta/ Mexico, 1-4, (2012).
  • [3] Villalpanda F., M. Reggio, and A. Ilinca, “Assessment of turbulence model for flow simulation around a wind turbine airfoil”, Modeling and Simulation in Engineering, 2011: 1-8, (2011).
  • [4] Duvigneau R. and Visonneau M., “Simulation and optimization of stall control for an airfoil with a synthetic jet”, Aerospace Science and Technology, 10: 279-287, (2006).
  • [5] Siauw W.L., Bonnet J-P., Tensi J., Cordier L., B.R. Noack and Cattafesta L., “ Transient Dynamics of the flow around a NACA 0015 airfoil using fluidic vortex generators”, International Journal of Heat and Fluid Flow, 31: 450-459, (2010).
  • [6] Srinivasan G.R., Ekaterinaris J.A. and McCroskey W. J., “ Evaluation of turbulence model for unsteady flows of an oscillating airfoil”, Computers & Fluids, 24: 833-861, (1995).
  • [7] Ravi H.C., Madhukeshwara N. and Kumarappa S., “ Numerical investigation of flow transition for NACA-4412 airfoil using computatıonal fluid dynamics”, International Journal of Innovative Research in Science Engineering and Technology, 2: 2778-2785, (2013).
  • [8] Deepa M.S., Nithya S.N. and Karthik P., “Numerical simulation of turbulent flow past Stationary NACA 0012 airfoil using FLUENT”, International Journal of Engineering Research & Technology, 2: 1209-1212, (2013).
  • [9] Şahin İ., ve Acır A., “Numerical and Experimental Investigations of Lift and Drag Performances of NACA-0015 Wind Turbine Airfoil’’, International Journal of Materials Mechanics and Manufacturing, 3(1): 22-25, (2015).
  • [10] Khabisi H.M., “The study of streamlines and pressure distribution around a NACA 0015 airfoil’’, The First Conference on the Development of Science and Chemical Industry, Kerman, 1-7, (2017).
  • [11] Saad M.M.M., Bin Mohd S., Zulkafli M.F. and Shibani W.M.E., “numerical analysis for comparison of aerodynamic characteristics of six airfoils’’, AIP Conf. Proc., 1831(1): 20004, (2017).
  • [12] https://tr.wikipedia.org/wiki/Kambur_balina
  • [13]http://consciousbreathadventures.com/humpack-whales-distinctive-features/
  • [14] Fish, F.E. and Battle, J.M., “Hydrodynamics design of humpback whale flipper,” journal of morphology’’, Journal of Morfology, 225: 51-60, (1995).
  • [15] Van Nierop E.A., Alben S., and Brenner M.P., “How bumps on whale flippers delay stall: an aerodynamic model”, Pyhsical Review Letters, 100: 1-4, (2008).
  • [16] Fish F.E., Howle L.E., and Murray M.M., “Hydrodynamic flow control in marine mammals”, Integrative and Comparative Biology, 48: 788-800, (2008).
  • [17] Fish F.E., Weber P.W., Murray M.M. and Howle L.E., “The tubercles on humpback whales’ flippers: application of bio-ınspired technology”, Integrative and Comparative Biology, 51(1): 203-213, (2011).
  • [18] Custodio D. and Henoch C.W., “Aerodynamic characteristics of finite span wings with leading-edge protuberances”, AIAA Journal, 503: 1878-1893, (2015).
  • [19] Miklosovic D.S., Howle L.E. and Fish F.E., “Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers”, Physics of Fluids ,16: 39-42, (2004).
  • [20] Fernandes I., Sapkota Y. Mammen T., Rasheed A., Rebello C.L. and Kim Y.H., “Theoretical and experimental investigation of the leading edge tubercles on the wing performance: Aviation Technology”, Aviation Technology Integration and Operations Conference, Los Angeles, USA, 1-41, (2013).
  • [21] Johari H., Henoch C., Custodio D. and Levshin A., “Effects of leading-edge proturbences on airfoil performance’’, AIAA Journal, 45: 2634-2632, (2007).
  • [22] Hasan M.J., Islam M.T., Hassan M.M., “A comparative analysis between NACA 4412 airfoil and it’s modified form with tubercles", 7th BSME International Conference On Thermal Engineering, 20041-20054, Bangladesh, (2017).
  • [23] Pedro H.T.C. and Kobayashi M.H., “Numerical study of stall delay on humpback whale flippers”, 46th AIAA Aerospace Sciences Meeting and Exhibit, Virigina, 584-592, (2008).
  • [24] Rostamzadeh N., Kelso R.M. and Dally B., “A numerical investigation into the effects of Reynolds number on the flow mechanism induced by a tubercled leading edge”, Theoretical and Computational Fluid Dynamics, 31(1): 1-32, (2017).
  • [25] Cai C., Zuo Z., Morimoto M., Maeda T. Kamada, Y. and Liu S., “Two-step stall characteristic of an airfoil with a single leading-edge protuberance”, AIAA Journal, 56(1): 1-14, (2017).
  • [26] http://airfoiltools.com/airfoil/details?airfoil=naca0015-il
  • [27] Ariff M., Salim S.M. and Chea S.C., “Wall Y + approach for dealing with turbulent flow over a surface mounted cube: part 1 – low Reynolds number”, Seventh International Conference on CFD in the Minerals and Process Industries, Australia, 1–6, (2009).
  • [28] https://www.sharcnet.ca/Software/Ansys/16.2.3/en-us/help/flu_ug/flu_ug_mesh_quality.html
  • [29] ANSYS FLUENT 12.0 Theory Gude - 4.4.3 Realzable – Model, http://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node60.htm
  • [30] Izoguchi M.M., Ajikawa Y.K. and Toh H.I., “Aerodynamic characteristics of low-aspect-ratio wings with various aspect ratios in low Reynolds number flows”, Trans. Japan Soc. Aero. Space Sci., 59(2): 56–63, (2016).
  • [31] Wang Y.Y., Hu W.R. and Zhang S.D., “Performance of the bio-inspired leading edge protuberances on a static wing and a pitching wing”, Journal of Hydrodynamics, 26(6): 912-920, (2015).
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Himmet Erdi Tanürün

Adem Acır This is me

Publication Date March 1, 2019
Submission Date November 4, 2017
Published in Issue Year 2019 Volume: 22 Issue: 1

Cite

APA Tanürün, H. E., & Acır, A. (2019). Modifiye Edilmiş NACA-0015 Kanat Yapısında Tüberkül Etkisinin Sayısal Analizi. Politeknik Dergisi, 22(1), 185-195. https://doi.org/10.2339/politeknik.391800
AMA Tanürün HE, Acır A. Modifiye Edilmiş NACA-0015 Kanat Yapısında Tüberkül Etkisinin Sayısal Analizi. Politeknik Dergisi. March 2019;22(1):185-195. doi:10.2339/politeknik.391800
Chicago Tanürün, Himmet Erdi, and Adem Acır. “Modifiye Edilmiş NACA-0015 Kanat Yapısında Tüberkül Etkisinin Sayısal Analizi”. Politeknik Dergisi 22, no. 1 (March 2019): 185-95. https://doi.org/10.2339/politeknik.391800.
EndNote Tanürün HE, Acır A (March 1, 2019) Modifiye Edilmiş NACA-0015 Kanat Yapısında Tüberkül Etkisinin Sayısal Analizi. Politeknik Dergisi 22 1 185–195.
IEEE H. E. Tanürün and A. Acır, “Modifiye Edilmiş NACA-0015 Kanat Yapısında Tüberkül Etkisinin Sayısal Analizi”, Politeknik Dergisi, vol. 22, no. 1, pp. 185–195, 2019, doi: 10.2339/politeknik.391800.
ISNAD Tanürün, Himmet Erdi - Acır, Adem. “Modifiye Edilmiş NACA-0015 Kanat Yapısında Tüberkül Etkisinin Sayısal Analizi”. Politeknik Dergisi 22/1 (March 2019), 185-195. https://doi.org/10.2339/politeknik.391800.
JAMA Tanürün HE, Acır A. Modifiye Edilmiş NACA-0015 Kanat Yapısında Tüberkül Etkisinin Sayısal Analizi. Politeknik Dergisi. 2019;22:185–195.
MLA Tanürün, Himmet Erdi and Adem Acır. “Modifiye Edilmiş NACA-0015 Kanat Yapısında Tüberkül Etkisinin Sayısal Analizi”. Politeknik Dergisi, vol. 22, no. 1, 2019, pp. 185-9, doi:10.2339/politeknik.391800.
Vancouver Tanürün HE, Acır A. Modifiye Edilmiş NACA-0015 Kanat Yapısında Tüberkül Etkisinin Sayısal Analizi. Politeknik Dergisi. 2019;22(1):185-9.