Research Article
BibTex RIS Cite

Özel Tip Bir Yarı Römork için Bağımsız Süspansiyon Sistemi Tasarımı: Kavramsal Tasarım Çalışmaları

Year 2019, Volume: 22 Issue: 1, 95 - 102, 01.03.2019
https://doi.org/10.2339/politeknik.399078

Abstract

Cam ve benzeri hassas yüklerin
taşınmasına uygun özel tip yarı römorklarda uygulanacak 4,5 ton taşıma
kapasiteli, boyuna salıncaklı bir bağımsız süspansiyon sisteminin kavramsal
tasarım adımları özetlenmiştir. Çalışmanın ilk aşamasında, tekerleğin toplam
çalışma stroku dikkate alınarak, süspansiyon sisteminin tasarım hacmi
belirlenmiştir. Hedeflenen şasi düşey titreşim frekansı ile şasi sönüm faktörü
değerlerini sağlayan hava yayı ve amortisör katsayıları, kütle-yay-sönümleyici
modeli kullanılarak hesaplanmıştır. Bu veriler kullanılarak, Adams/Car™ çoklu
cisim dinamiği paket programı yardımıyla, süspansiyonun çoklu cisim (ÇC) modeli
oluşturulmuştur. Adams/Insight™ uygulaması yardımıyla, yaylanma sırasında en
düşük aks açıklığı değişimini meydana getirecek uygun salıncak yatağı konumu
bulunmuştur. Yatak konumu, şasinin konstrüksiyonu ile yay ve amortisörün
strokları gibi faktörler ışığında, süspansiyon salıncağının ön tasarımı
yapılmıştır. Bu tasarımın kütlesi, topoloji optimizasyonu yardımıyla, yaklaşık
%37 oranında azaltılmıştır. Farklı sürüş durumlarında, tekerlek temas noktasına
etkimesi öngörülen yükler için ANSYS® Workbench uygulaması
yardımıyla, sistemin sonlu elemanlar (SE) analizleri gerçekleştirilmiştir.
Tamamlanmış tasarımın, tasarım yükünün üç katı için güvenlik koşulunu sağladığı
görülmüştür. CATIA® V5R21 DMU Kinematics uygulaması yardımıyla
gerçekleştirilen kinematik incelemede, tam yaylanma durumunda, süspansiyon
elemanları ve şasi arasında herhangi bir girişim oluşmadığı belirlenmiştir.  

References

  • [1] Reimpell J., Stoll H., Betzler J.W., “The Automotive Chassis: Engineering Principles”, Butterworth-Heinemann, Oxford, (2002).
  • [2] 2. Hoepke E., Breuer S., “Nutzfahrzeugtechnik”, Vieweg+Teubner GWV Fachverlage GmbH, Wiesbaden, (2008).
  • [3] Omojaro 3. Yamanaka T., Hoshino H., Motoyama K., “Design optimization technique for suspension mechanism of automobile”, Seoul 2000 FISITA World Automotive Congress, Seul, F2000G309, (2000).
  • [4] Hwang J.S., Kim S.R., Han S.Y., “Kinematic design of a double wishbone type front suspension mechanism using multi-objective optimization”, Proceedings of the 5th Australasian Congress on Applied Mechanics (ACAM 2007), Brisbane, 788-793, (2007).
  • [5] Sancibrian R., Garcia P., Viadero F., Fernandez A., De-Juan A., “Kinematic design of double-wishbone suspension systems using a multiobjective optimisation approach”, Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 48: 793-813, (2010).
  • [6] Arikere A., Kumar G.S., Bandyopadhyay S, Optimisation of double wishbone suspension system using multi-objective genetic algorithm, Simulated Evolution and Learning: 8th International Conference (SEAL 2010), Kanpur, 445-454, (2010).
  • [7] Zhang J.J., Xu L.W., Gao R., “Multi-island genetic algorithm optimization of suspension system”, Telkomnika, 10: 1685-1691, (2012).
  • [8] Heo S.J., Kang D.O., Lee J.H., Kim I.H., Darwish S.M., “Shape optimization of lower control arm considering multi-disciplinary constraint condition by using progress meta-model method”, International Journal of Automotive Technology, 14: 499-505, (2013).
  • [9] Yarmohamadi H., “Advances in heavy vehicle dynamics with focus on engine mounts and individual front suspension”, Doktora Tezi, Chalmers University of Technology, (2012).
  • [10] Yarmohamadi H., Berbyuk V., “Kinematic and dynamic analysis of a heavy truck with individual front suspension”, Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 51: 877-905, (2013).
  • [11] Matschinsky W., “Radführungen der Straβenfahrzeuge”, Springer-Verlag, Berlin Heidelberg, (2007).
  • [12] Woernle C., “Fahrmechanik: Skriptum Vorlesung”, Fakultät Maschinenbau und Schiffstechnik, Universität Rostock, Rostock, (2005).
  • [13] “Continental Luftfederbälge”, Continental Gummi-Werke Aktiengesellschaft, Hannover, (1977).
  • [14] Pahl H.J., “Luftfedern in Nutzfahrzeugen, Auslegung-Berechnung-Praxis”, Firmenschrift, Luftfedertechnik (LFT) Germany GmbH / AKTAŞ Group, Dormagen.
  • [15] Blundell M., Harty D., “The Multibody Systems Approach to Vehicle Dynamics”, Elsevier Butterworth – Heinemann, London, (2006).
  • [16] v.Estorff H.E., “Technische Daten Fahrzeugfedern Teil 3: Stabilisatoren”, Stahlwerke Brüninghaus GmbH., Werdohl, (1969).
  • [17] Montgomery D.C., “Design and Analysis of Experiments”, John Wiley & Sons, Inc., New Jersey, (2000).
  • [18] Aydın M., Ünlüsoy S., “Optimization of suspension parameters to improve impact harshness of road vehicles”, The International Journal of Advanced Manufacturing Technology, 60: 743–754, (2012).
  • [19] Topaç M.M., Bahar E., Olguner C., Kuralay N.S., “Kinematic optimisation of an articulated truck independent front suspension by using response surface methodology”, AVTECH’15: III. Automotive and Vehicle Technologies Conference, İstanbul, 59-72, (2015).
  • [20] Heißing B., Ersoy M., Gies S., “Fahrwerkhandbuch, Grundlagen, Fahrdynamik, Komponenten, Systeme, Mechatronik, Perspektiven”, Vieweg+Teubner Verlag - Springer Fachmedien Wiesbaden GmbH., Wiesbaden, (2011).
  • [21] Topaç M.M., Olguner C., Yenice A., Kuralay N.S., “Kamyon bağımsız ön süspansiyon sisteminin kavramsal tasarımı”, MTS8: 8. Mühendislik ve Teknoloji Sempozyumu, Ankara, 39-44, (2015).
  • [22] Topaç M.M., Bahar E., Kaplan A., Sarıkaya E.Z., “Design of a lower wishbone for a military vehicle independent front suspension using topology optimization”, IDEFIS 2017: 2nd International Defence Industry Symposium, Kırıkkale, 333-342, (2017).
  • [23] Bendsøe M.P., Sigmund O., “Topology optimization, theory, methods, and applications”, Springer, Berlin, (2003).
  • [24] Wang S., “Krylov Subspace Methods for Topology Optimization on Adaptive Meshes”, Doktota tezi, University of Illinois, (2007).
  • [25] Johnsen S., “Structural topology optimization”, Yüksek lisans tezi, Norwegian University of Science and Technology, (2013).
  • [26] Huang X., Xie Y.M., “Evolutionary Topology Optimization of Continuum Structures - Methods and Applications”, John Wiley & Sons, Inc., New Jersey, (2010).
  • [27] Svanberg, K., Svärd, H., “Density filters for topology optimization based on the Pythagorean means”, Structural and Multidisciplinary Optimization, 48: 859–875, (2013).
  • [28] Shukla, A., Misra A., Kumar S., “Checkerboard problem in finite element based topology optimization”, International Journal of Advances in Engineering & Technology, 6: 1769-1774, (2013).
  • [29] Sergent, N., Tirovic, M., Voveris, J., “Design optimization of an opposed piston brake caliper”, Engineering Optimization, 46: 1520-1537, (2014).
  • [30] “ANSYS Topology Optimization ACT Extension, 17.2 release”. (2016). ANSYS, Inc., (2016).

Design of an Independent Suspension for a Special Type Semi-Trailer: Conceptual Design Studies

Year 2019, Volume: 22 Issue: 1, 95 - 102, 01.03.2019
https://doi.org/10.2339/politeknik.399078

Abstract

Conceptual design steps of a 4.5 metric tonnes
capacity, trailing arm-type independent suspension system, which will be
applied to special type semi-trailers suitable for the transport of glass and
other sensitive loads, are summarized. In the first phase of the work, the
design volume of the suspension system is determined, by taking the total
working stroke of the wheel into account. The spring and damping coefficients,
which provide the required vertical vibration frequency and the chassis damping
factor for the chassis, are calculated by using the mass-spring-damper model.
By using these data, a multi-body (MB) model of the suspension system was
created via Adams/Car ™ multibody dynamics software package. Proper position of
the control arm bearing which satisfies the minimum wheel base alteration
during the wheel travel  by using the
Adams / Insight ™ application. In the light of the factors such as the bearing
position, chassis structure, the strokes of the spring and damper, pre-design
of the control arm was carried out. Mass of this design was decreased about 37%
with the help of topology optimization. Finite element (FE) analyses of the
suspension system was also carried out via ANSYS® Workbench
application for predicted loads on the wheel contact point which represent
various load conditions. Results showed that the final design satisfies the
safety condition for three times the design load. Kinematic inspection which
was carried out by using the CATIA® V5R21 DMU Kinematics application
was also showed that there is no penetration between the suspension components
and the chassis for full jounce.

References

  • [1] Reimpell J., Stoll H., Betzler J.W., “The Automotive Chassis: Engineering Principles”, Butterworth-Heinemann, Oxford, (2002).
  • [2] 2. Hoepke E., Breuer S., “Nutzfahrzeugtechnik”, Vieweg+Teubner GWV Fachverlage GmbH, Wiesbaden, (2008).
  • [3] Omojaro 3. Yamanaka T., Hoshino H., Motoyama K., “Design optimization technique for suspension mechanism of automobile”, Seoul 2000 FISITA World Automotive Congress, Seul, F2000G309, (2000).
  • [4] Hwang J.S., Kim S.R., Han S.Y., “Kinematic design of a double wishbone type front suspension mechanism using multi-objective optimization”, Proceedings of the 5th Australasian Congress on Applied Mechanics (ACAM 2007), Brisbane, 788-793, (2007).
  • [5] Sancibrian R., Garcia P., Viadero F., Fernandez A., De-Juan A., “Kinematic design of double-wishbone suspension systems using a multiobjective optimisation approach”, Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 48: 793-813, (2010).
  • [6] Arikere A., Kumar G.S., Bandyopadhyay S, Optimisation of double wishbone suspension system using multi-objective genetic algorithm, Simulated Evolution and Learning: 8th International Conference (SEAL 2010), Kanpur, 445-454, (2010).
  • [7] Zhang J.J., Xu L.W., Gao R., “Multi-island genetic algorithm optimization of suspension system”, Telkomnika, 10: 1685-1691, (2012).
  • [8] Heo S.J., Kang D.O., Lee J.H., Kim I.H., Darwish S.M., “Shape optimization of lower control arm considering multi-disciplinary constraint condition by using progress meta-model method”, International Journal of Automotive Technology, 14: 499-505, (2013).
  • [9] Yarmohamadi H., “Advances in heavy vehicle dynamics with focus on engine mounts and individual front suspension”, Doktora Tezi, Chalmers University of Technology, (2012).
  • [10] Yarmohamadi H., Berbyuk V., “Kinematic and dynamic analysis of a heavy truck with individual front suspension”, Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 51: 877-905, (2013).
  • [11] Matschinsky W., “Radführungen der Straβenfahrzeuge”, Springer-Verlag, Berlin Heidelberg, (2007).
  • [12] Woernle C., “Fahrmechanik: Skriptum Vorlesung”, Fakultät Maschinenbau und Schiffstechnik, Universität Rostock, Rostock, (2005).
  • [13] “Continental Luftfederbälge”, Continental Gummi-Werke Aktiengesellschaft, Hannover, (1977).
  • [14] Pahl H.J., “Luftfedern in Nutzfahrzeugen, Auslegung-Berechnung-Praxis”, Firmenschrift, Luftfedertechnik (LFT) Germany GmbH / AKTAŞ Group, Dormagen.
  • [15] Blundell M., Harty D., “The Multibody Systems Approach to Vehicle Dynamics”, Elsevier Butterworth – Heinemann, London, (2006).
  • [16] v.Estorff H.E., “Technische Daten Fahrzeugfedern Teil 3: Stabilisatoren”, Stahlwerke Brüninghaus GmbH., Werdohl, (1969).
  • [17] Montgomery D.C., “Design and Analysis of Experiments”, John Wiley & Sons, Inc., New Jersey, (2000).
  • [18] Aydın M., Ünlüsoy S., “Optimization of suspension parameters to improve impact harshness of road vehicles”, The International Journal of Advanced Manufacturing Technology, 60: 743–754, (2012).
  • [19] Topaç M.M., Bahar E., Olguner C., Kuralay N.S., “Kinematic optimisation of an articulated truck independent front suspension by using response surface methodology”, AVTECH’15: III. Automotive and Vehicle Technologies Conference, İstanbul, 59-72, (2015).
  • [20] Heißing B., Ersoy M., Gies S., “Fahrwerkhandbuch, Grundlagen, Fahrdynamik, Komponenten, Systeme, Mechatronik, Perspektiven”, Vieweg+Teubner Verlag - Springer Fachmedien Wiesbaden GmbH., Wiesbaden, (2011).
  • [21] Topaç M.M., Olguner C., Yenice A., Kuralay N.S., “Kamyon bağımsız ön süspansiyon sisteminin kavramsal tasarımı”, MTS8: 8. Mühendislik ve Teknoloji Sempozyumu, Ankara, 39-44, (2015).
  • [22] Topaç M.M., Bahar E., Kaplan A., Sarıkaya E.Z., “Design of a lower wishbone for a military vehicle independent front suspension using topology optimization”, IDEFIS 2017: 2nd International Defence Industry Symposium, Kırıkkale, 333-342, (2017).
  • [23] Bendsøe M.P., Sigmund O., “Topology optimization, theory, methods, and applications”, Springer, Berlin, (2003).
  • [24] Wang S., “Krylov Subspace Methods for Topology Optimization on Adaptive Meshes”, Doktota tezi, University of Illinois, (2007).
  • [25] Johnsen S., “Structural topology optimization”, Yüksek lisans tezi, Norwegian University of Science and Technology, (2013).
  • [26] Huang X., Xie Y.M., “Evolutionary Topology Optimization of Continuum Structures - Methods and Applications”, John Wiley & Sons, Inc., New Jersey, (2010).
  • [27] Svanberg, K., Svärd, H., “Density filters for topology optimization based on the Pythagorean means”, Structural and Multidisciplinary Optimization, 48: 859–875, (2013).
  • [28] Shukla, A., Misra A., Kumar S., “Checkerboard problem in finite element based topology optimization”, International Journal of Advances in Engineering & Technology, 6: 1769-1774, (2013).
  • [29] Sergent, N., Tirovic, M., Voveris, J., “Design optimization of an opposed piston brake caliper”, Engineering Optimization, 46: 1520-1537, (2014).
  • [30] “ANSYS Topology Optimization ACT Extension, 17.2 release”. (2016). ANSYS, Inc., (2016).
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Mehmet Murat Topaç

Berk Özmen This is me

Uğur Deryal This is me

Orhun Selbes This is me

Publication Date March 1, 2019
Submission Date November 8, 2017
Published in Issue Year 2019 Volume: 22 Issue: 1

Cite

APA Topaç, M. M., Özmen, B., Deryal, U., Selbes, O. (2019). Özel Tip Bir Yarı Römork için Bağımsız Süspansiyon Sistemi Tasarımı: Kavramsal Tasarım Çalışmaları. Politeknik Dergisi, 22(1), 95-102. https://doi.org/10.2339/politeknik.399078
AMA Topaç MM, Özmen B, Deryal U, Selbes O. Özel Tip Bir Yarı Römork için Bağımsız Süspansiyon Sistemi Tasarımı: Kavramsal Tasarım Çalışmaları. Politeknik Dergisi. March 2019;22(1):95-102. doi:10.2339/politeknik.399078
Chicago Topaç, Mehmet Murat, Berk Özmen, Uğur Deryal, and Orhun Selbes. “Özel Tip Bir Yarı Römork için Bağımsız Süspansiyon Sistemi Tasarımı: Kavramsal Tasarım Çalışmaları”. Politeknik Dergisi 22, no. 1 (March 2019): 95-102. https://doi.org/10.2339/politeknik.399078.
EndNote Topaç MM, Özmen B, Deryal U, Selbes O (March 1, 2019) Özel Tip Bir Yarı Römork için Bağımsız Süspansiyon Sistemi Tasarımı: Kavramsal Tasarım Çalışmaları. Politeknik Dergisi 22 1 95–102.
IEEE M. M. Topaç, B. Özmen, U. Deryal, and O. Selbes, “Özel Tip Bir Yarı Römork için Bağımsız Süspansiyon Sistemi Tasarımı: Kavramsal Tasarım Çalışmaları”, Politeknik Dergisi, vol. 22, no. 1, pp. 95–102, 2019, doi: 10.2339/politeknik.399078.
ISNAD Topaç, Mehmet Murat et al. “Özel Tip Bir Yarı Römork için Bağımsız Süspansiyon Sistemi Tasarımı: Kavramsal Tasarım Çalışmaları”. Politeknik Dergisi 22/1 (March 2019), 95-102. https://doi.org/10.2339/politeknik.399078.
JAMA Topaç MM, Özmen B, Deryal U, Selbes O. Özel Tip Bir Yarı Römork için Bağımsız Süspansiyon Sistemi Tasarımı: Kavramsal Tasarım Çalışmaları. Politeknik Dergisi. 2019;22:95–102.
MLA Topaç, Mehmet Murat et al. “Özel Tip Bir Yarı Römork için Bağımsız Süspansiyon Sistemi Tasarımı: Kavramsal Tasarım Çalışmaları”. Politeknik Dergisi, vol. 22, no. 1, 2019, pp. 95-102, doi:10.2339/politeknik.399078.
Vancouver Topaç MM, Özmen B, Deryal U, Selbes O. Özel Tip Bir Yarı Römork için Bağımsız Süspansiyon Sistemi Tasarımı: Kavramsal Tasarım Çalışmaları. Politeknik Dergisi. 2019;22(1):95-102.