Research Article
BibTex RIS Cite

Duvardan Radyant Soğutma Sistemlerinde Soğutucu Akışkan Sıcaklığının Isıl Konfora Etkisinin İncelenmesi

Year 2019, Volume: 22 Issue: 2, 461 - 468, 01.06.2019
https://doi.org/10.2339/politeknik.444374

Abstract

Radyant sistemler geleneksel ısıtma
ve soğutma sistemlerine göre daha iyi ısıl konfor şartları sağlamalarının yanında
düşük enerji tüketimleriyle de ön plana çıkmaktadırlar. Radyant panel
sistemlerinin enerji ve ekserji açısından gösterdikleri performanslar dünya
çapında akademisyenlerin ilgisini çekmiştir. Bu çalışmada, duvardan radyant
soğutma sisteminin ısıl konfora etkisi sayısal olarak incelenmiştir. Bu amaçla
yapılan çalışmalarda radyant panellerin içerisinde bulunan soğutucu akışkan
sıcaklığı sırasıyla 18°C, 20°C ve 22°C tanımlanarak sonuçlar PMV-PPD
parametrelerine göre karşılaştırılmıştır. Tüm durumların ASHRAE 55 standardında
belirtilen ısıl konfor şartlarını sağladığı, en iyi ısıl konfor değerine yakın
durumun 20°C soğutucu akışkan sıcaklığında gerçekleştiği görülmüştür.

References

  • [1] Fanger, P. O., "Thermal comfort. Analysis and applications in environmental engineering", (1970).
  • [2] Oxizidis, S., Papadopoulos, M. A., “Performance of radiant cooling surfaces with respect to energy consumption and thermal comfort”, Energy and Buildings, 57: 199-209, (2013).
  • [3] Catalina, T., Virgone, J. ve Kuznik, F., "Evaluation of thermal comfort using combined CFD and experimentation study in a test room equipped with a cooling ceiling", Building and Environment, 44: 1740–1750, (2009).
  • [4] Lim, J.H., Jo, J.H., Yong, Y.K., Souk, M., Kim, K.W., “Application of the control methods for radiant floor cooling system in residential buildings”, Building and Environment, 41: 60-73, (2006).
  • [5] Hodder, S. G., Loveday, D. L., Parsons, K. C. ve Taki, A. H., "Thermal comfort in chilled ceiling and displacement ventilation environments: vertical radiant temperature asymmetry effects", Energy and Buildings, 27: 167–173, (1998).
  • [6] Imanari, T., Omori, T. ve Bogaki, K., "Thermal comfort and energy consumption of the radiant ceiling panel system: Comparison with the conventional all-air system", Energy and Buildings, 30: 167–175 (1999).
  • [7] Zhao, K., Liu, X. H. ve Jiang, Y., "Application of radiant floor cooling in large space buildings - A review", Renewable and Sustainable Energy Reviews, 55: 1083–1096, (2016).
  • [8] Fernandez Hernandez, F., Cejudo Lopez, J. M., Fernandez Gutierrez, A. ve Dominguez Munoz, F., "A new terminal unit combining a radiant floor with an underfloor air system: Experimentation and numerical model", Energy and Buildings, 133: 70–78, (2016).
  • [9] TS 825, “Binalarda Isı Yalıtım Kuralları”, (2008).
  • [10] White, F. M., “Fluid Mechanics”, McGraw-Hill, 3. Baskı, New York, (2003).
  • [11] Incropera, F.P. ve Dewitt, P.D.,” Fundamentals of Heat and Mass Transfer”, John Wiley and Sons, 3. Baskı, New York (2013).
  • [12] ANSYS, “Ansys Fluent Theory Guide, Yayın No: 15”, (2013).
  • [13] Bardina, J.E., Huang, P.G. ve Coakley, T.J., “Turbulence Modeling Validation, Testing, and Development”, NASA technical memorandum, California, (1997).
  • [14] Yuan, X., “Wall Functions for Numerical Simulation of Natural Convection along Vertical Surfaces”, Yüksek Lisans Tezi, ETH Zürich, Zürih, (1995).
  • [15] ANSYS, “Ansys Fluent User’s Guide, Yayın No: 16”, (2015).
  • [16] https://www.ansys.com/products/fluids/ansys-fluent
  • [17] Alarko Carrier Sanayi ve Ticaret A.Ş., “Şehirlerin Yaz ve Kış Dış Hava Tasarım Sıcaklıkları”, https://www.alarko-carrier.com.tr/tr/TeknikDestek/DisHavaTasarimSicakliklari.pdf, 30 Haziran 2017
  • [18] ISO 7730, “Ergonomics of the thermal environment — Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria”, (2015).
  • [19] ASHRAE 55, “Thermal Environmental Conditions for Human Occupancy”, (2013).

Investigation of Coolant Temperature Effect on Thermal Comfort in Wall Mounted Radiant Cooling Systems

Year 2019, Volume: 22 Issue: 2, 461 - 468, 01.06.2019
https://doi.org/10.2339/politeknik.444374

Abstract

Radiant systems provide better thermal comfort
conditions than traditional heating and cooling systems, as well as low energy
consumption. The performance of radiant panel systems in terms of energy and
exergy have attracted the attention of the academicians around the world. In
this study, the effect of the wall mounted radiant cooling system on thermal
comfort was investigated numerically. For this purpose, the coolant temperature
inside the radiant panels was defined as 18°C, 20°C and 22°C respectively and
the results were compared according to the PMV-PPD parameters. It has been
found that all cases fulfilled the thermal comfort conditions specified in
ASHRAE 55 standard and the best conditions were obtained at 20°C water
temperature.

References

  • [1] Fanger, P. O., "Thermal comfort. Analysis and applications in environmental engineering", (1970).
  • [2] Oxizidis, S., Papadopoulos, M. A., “Performance of radiant cooling surfaces with respect to energy consumption and thermal comfort”, Energy and Buildings, 57: 199-209, (2013).
  • [3] Catalina, T., Virgone, J. ve Kuznik, F., "Evaluation of thermal comfort using combined CFD and experimentation study in a test room equipped with a cooling ceiling", Building and Environment, 44: 1740–1750, (2009).
  • [4] Lim, J.H., Jo, J.H., Yong, Y.K., Souk, M., Kim, K.W., “Application of the control methods for radiant floor cooling system in residential buildings”, Building and Environment, 41: 60-73, (2006).
  • [5] Hodder, S. G., Loveday, D. L., Parsons, K. C. ve Taki, A. H., "Thermal comfort in chilled ceiling and displacement ventilation environments: vertical radiant temperature asymmetry effects", Energy and Buildings, 27: 167–173, (1998).
  • [6] Imanari, T., Omori, T. ve Bogaki, K., "Thermal comfort and energy consumption of the radiant ceiling panel system: Comparison with the conventional all-air system", Energy and Buildings, 30: 167–175 (1999).
  • [7] Zhao, K., Liu, X. H. ve Jiang, Y., "Application of radiant floor cooling in large space buildings - A review", Renewable and Sustainable Energy Reviews, 55: 1083–1096, (2016).
  • [8] Fernandez Hernandez, F., Cejudo Lopez, J. M., Fernandez Gutierrez, A. ve Dominguez Munoz, F., "A new terminal unit combining a radiant floor with an underfloor air system: Experimentation and numerical model", Energy and Buildings, 133: 70–78, (2016).
  • [9] TS 825, “Binalarda Isı Yalıtım Kuralları”, (2008).
  • [10] White, F. M., “Fluid Mechanics”, McGraw-Hill, 3. Baskı, New York, (2003).
  • [11] Incropera, F.P. ve Dewitt, P.D.,” Fundamentals of Heat and Mass Transfer”, John Wiley and Sons, 3. Baskı, New York (2013).
  • [12] ANSYS, “Ansys Fluent Theory Guide, Yayın No: 15”, (2013).
  • [13] Bardina, J.E., Huang, P.G. ve Coakley, T.J., “Turbulence Modeling Validation, Testing, and Development”, NASA technical memorandum, California, (1997).
  • [14] Yuan, X., “Wall Functions for Numerical Simulation of Natural Convection along Vertical Surfaces”, Yüksek Lisans Tezi, ETH Zürich, Zürih, (1995).
  • [15] ANSYS, “Ansys Fluent User’s Guide, Yayın No: 16”, (2015).
  • [16] https://www.ansys.com/products/fluids/ansys-fluent
  • [17] Alarko Carrier Sanayi ve Ticaret A.Ş., “Şehirlerin Yaz ve Kış Dış Hava Tasarım Sıcaklıkları”, https://www.alarko-carrier.com.tr/tr/TeknikDestek/DisHavaTasarimSicakliklari.pdf, 30 Haziran 2017
  • [18] ISO 7730, “Ergonomics of the thermal environment — Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria”, (2015).
  • [19] ASHRAE 55, “Thermal Environmental Conditions for Human Occupancy”, (2013).
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Merve Öztürk

Onur Oruç This is me

Publication Date June 1, 2019
Submission Date February 12, 2018
Published in Issue Year 2019 Volume: 22 Issue: 2

Cite

APA Öztürk, M., & Oruç, O. (2019). Duvardan Radyant Soğutma Sistemlerinde Soğutucu Akışkan Sıcaklığının Isıl Konfora Etkisinin İncelenmesi. Politeknik Dergisi, 22(2), 461-468. https://doi.org/10.2339/politeknik.444374
AMA Öztürk M, Oruç O. Duvardan Radyant Soğutma Sistemlerinde Soğutucu Akışkan Sıcaklığının Isıl Konfora Etkisinin İncelenmesi. Politeknik Dergisi. June 2019;22(2):461-468. doi:10.2339/politeknik.444374
Chicago Öztürk, Merve, and Onur Oruç. “Duvardan Radyant Soğutma Sistemlerinde Soğutucu Akışkan Sıcaklığının Isıl Konfora Etkisinin İncelenmesi”. Politeknik Dergisi 22, no. 2 (June 2019): 461-68. https://doi.org/10.2339/politeknik.444374.
EndNote Öztürk M, Oruç O (June 1, 2019) Duvardan Radyant Soğutma Sistemlerinde Soğutucu Akışkan Sıcaklığının Isıl Konfora Etkisinin İncelenmesi. Politeknik Dergisi 22 2 461–468.
IEEE M. Öztürk and O. Oruç, “Duvardan Radyant Soğutma Sistemlerinde Soğutucu Akışkan Sıcaklığının Isıl Konfora Etkisinin İncelenmesi”, Politeknik Dergisi, vol. 22, no. 2, pp. 461–468, 2019, doi: 10.2339/politeknik.444374.
ISNAD Öztürk, Merve - Oruç, Onur. “Duvardan Radyant Soğutma Sistemlerinde Soğutucu Akışkan Sıcaklığının Isıl Konfora Etkisinin İncelenmesi”. Politeknik Dergisi 22/2 (June 2019), 461-468. https://doi.org/10.2339/politeknik.444374.
JAMA Öztürk M, Oruç O. Duvardan Radyant Soğutma Sistemlerinde Soğutucu Akışkan Sıcaklığının Isıl Konfora Etkisinin İncelenmesi. Politeknik Dergisi. 2019;22:461–468.
MLA Öztürk, Merve and Onur Oruç. “Duvardan Radyant Soğutma Sistemlerinde Soğutucu Akışkan Sıcaklığının Isıl Konfora Etkisinin İncelenmesi”. Politeknik Dergisi, vol. 22, no. 2, 2019, pp. 461-8, doi:10.2339/politeknik.444374.
Vancouver Öztürk M, Oruç O. Duvardan Radyant Soğutma Sistemlerinde Soğutucu Akışkan Sıcaklığının Isıl Konfora Etkisinin İncelenmesi. Politeknik Dergisi. 2019;22(2):461-8.