Research Article
BibTex RIS Cite

Using Inorganic Nanoparticle-Based Drug Delivery Systems against Human Colon Cancer Cells: Effect of Particle Size on Anticancer Activity

Year 2020, Volume: 23 Issue: 1, 171 - 179, 01.03.2020
https://doi.org/10.2339/politeknik.496351

Abstract

Today’s nanoparticle
technology enables the synthesis of nanoparticle
-based drug delivery systems with
desired size, shape, and materials especially for the applications of cancer nanomedicine.
Thereby, understanding impact of particle sizes on anticancer activity will
contribute to development of new drug delivery systems in cancer therapy.
For this reason, in this
study, two different sized nanoparticles (with ~55 and 314 nm) were used as
drug delivery systems and the effects of their size on the cellular uptake, cytotoxicity
and apoptosis were investigated against the human colon carcinoma Caco-2 and HCT-116
cells. The results demonstrated that small nanoparticles promoted fast
nanoparticle accumulation in both
cancer cells in comparison to large particles. Small nanoparticles
exhibited higher cytotoxicity in cancer cells with lower half maximal
inhibitory concentration (IC50) values than large nanoparticles in
48 h. On the other hand, both nanoparticles showed similar IC50
values after 72 h prolonged exposure. Moreover, it was found that small
nanoparticles increased the number of apoptotic cells in 24 h, whereas large nanoparticles
induced apoptosis when exposure time increased to 72 h. These observations show
that small sized drug delivery systems could be more efficient for improving
the anticancer effects of chemotherapeutic drugs against human colon carcinoma
as compared to large sized drug delivery systems.

References

  • [1] Müller R. H, Jacobs C. and Kayser O., “Nanosuspensions as particulate drug formulations in therapy: Rationale for development and what we can expect for the future”, Adv Drug Deliv Rev., 47: 3–19, (2001)[2] Jaracz S., Chen J., Kuznetsova L. V. and Ojima I., “Recent advances in tumor-targeting anticancer drug conjugates”, Bioorg. Med. Chem., 13: 5043–5054, (2005) [3] Müller R. H. and Peters K., “Nanosuspensions for the formulation of poorly soluble drugs: I. Preparation by a size-reduction technique”, Int J Pharm., 160: 229–237, (1998)[4] Rizzo L. Y., Theek B., Storm G., Kiessling F. and Lammers T., “Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications”, Curr. Opin. Biotechnol., 24: 1159–1166, (2013)[5] Shapira A., Livney Y. D., Broxterman H. J. and Assaraf Y. G., “Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance”, Drug Resist Updat., 14: 150–163, (2011)[6] Sun C., Lee J. S. and Zhang M., “Magnetic nanoparticles in MR imaging and drug delivery”, Adv Drug Deliv Rev., 60: 1252–1265, (2008)[7] Park J. H., von Maltzahn G., Ruoslahti E., Bhatia S. N. and Sailor M. J., “Micellar hybrid nanoparticles for simultaneous magneto-fluorescent imaging and drug delivery”, Angew Chem Int Ed Engl., 47: 7284−7288, (2008)[8] Sykes E. A., Chen J., Zheng G. and Chan W. C., “Investigating the Impact of Nanoparticle Size on Active and Passive Tumor Targeting Efficiency”, ACS Nano., 8: 5696−706, (2014)[9] Danhier F., Feron O. and Préat V., “To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery”, J. Control. Release, 148: 135–146, (2010)[10] Laurent S., Forge D., Port M., Roch A., Robic C., Elst L. V. and Muller R. N., “Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications”, Chem. Rev., 108: 2064–2110, (2008)[11] Uchiyama K., Nagayasu A., Yamagiwa Y., Nishida T., Harashima H. and Kiwada H., “Effects of the size and fluidity of liposomes on their accumulation in tumors: A presumption of their interaction with tumors”, Int. J. Pharm., 121: 195–203, (1995)[12] Nagayasu A., Shimooka T., Kinouchi Y., Uchiyama K., Takeichi Y. and Kiwada H., “Effects of fluidity and vesicle size on antitumor activity and myelosuppressive activity of liposomes loaded with daunorubicin”, Biol Pharm Bull., 17: 935–939, (1994)[13] Nagayasu A., Uchiyama K. and Kiwada H., “The size of liposomes: a factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs”, Adv Drug Deliv Rev., 40: 75–87, (1999)[14] Gao J. H., Gu H. W. and Xu B., “Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications”, Acc. Chem. Res., 42: 1097−1107, (2009)[15] Lee J. E., Lee N., Kim H., Kim J., Choi S. H., Kim J. H., Kim T., Song I. C., Park S. P., Moon W. K. and Hyeon T., “Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery”, J. Am. Chem. Soc., 132: 552−557, (2010)[16] Daglioglu C. and Okutucu B., “Synthesis and characterization of AICAR and DOX conjugated multifunctional nanoparticles as a platform for synergistic inhibition of cancer cell growth”, Bioconjug. Chem., 27: 1098−1111, (2016) [17] Daglioglu C., “Enhancing tumor cell response to multidrug resistance with pH-sensitive quercetin and doxorubicin conjugated multifunctional nanoparticles”, Colloids Surf. B Biointerfaces, 156: 175–185, (2017)[18] Daglioglu C., “Environmentally responsive dual-targeting nanoparticles: improving drug accumulation in cancer cells as a way of preventing anticancer drug efflux”, J. Pharma. Sci., 107: 934-941, (2018)[19] Russell-Jones G., McTavish K., McEwan J., Rice J. and Nowotnik D., “Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumors”, J. Inorg. Biochem., 98: 1625–1633, (2004)[20] Daglioglu C. and Okutucu B., “Therapeutic effects of AICAR and DOX conjugated multifunctional nanoparticles in sensitization and elimination of cancer cells via survivin targeting”, Pharm. Res., 34: 175−84, (2017)[21] Daglioglu C., “İlaç Taşıma Sistemleri olarak Nanopartiküller kullanılarak Pasif ve Aktif Tümör Hedeflemelerinin Karşılaştırmalı İncelenmesi”, Akademik Platform Mühendislik ve Fen Bilimleri Dergisi, 6: 01-07, (2018)

İnsan Kolon Kanseri Hücrelerine Karşı İnorganik Nanopartikül-Temelli İlaç Taşıyıcı Sistemlerin Kullanılması: Partikül Büyüklüğünün Antikanser Aktivitesine Etkisi

Year 2020, Volume: 23 Issue: 1, 171 - 179, 01.03.2020
https://doi.org/10.2339/politeknik.496351

Abstract

Günümüz nanopartikül teknolojisi, özellikle kanser
nanotıp uygulamalarında kullanılmak üzere istenilen boyut, şekil ve malzemeye
sahip nanopartikül-temelli ilaç taşıyıcı sistemlerinin sentezine olanak
sağlamaktadır. Dolayısıyla, partikül boyutlarının antikanser aktivite
üzerindeki etkisini anlamak, kanser tedavisinde yeni ilaç taşıyıcı sistemlerin
geliştirilmesine katkıda bulunacaktır. Bu nedenle, bu çalışmada, ilaç taşıyıcı
sistemler olarak iki farklı büyüklükteki inorganik temelli nanopartiküller (~
55 ve 314 nm) kullanıldı ve boyutlarının hücresel birikim, sitotoksisite ve
apoptoz üzerindeki etkileri insan kolon kanseri Caco-2 ve HCT-116 hücrelerine karşı
araştırıldı. Elde edilen sonuçlar, büyük nanopartiküllerle karşılaştırıldığında
küçük nanopartiküllerin her iki kanser hücresinde de hızlı nanopartikül birikimini
desteklediğini gösterdi. Küçük nanopartiküller, büyük nanopartiküllere göre 48
saat içinde daha düşük
yarı-maksimum
inhibisyon konsantrasyonu (IC50) değerleri ile kanser hücrelerinde
daha yüksek sitotoksisite sergiledi.

Öte yandan,
her iki nanopartikül de 72 saate varan inkübasyon süreleri sonrası benzer IC50
değerleri gösterdi.
Ayrıca, küçük nanopartiküller 24 saatte apoptotik hücrelerin sayısını artırırken,
büyük nanopartiküllerin 72 saatlik süre içerisinde apoptozu indüklediği belirlendi.
Bu gözlemler, küçük boyutlu ilaç taşıma sistemlerinin,
büyük boyutlu ilaç taşıma sistemleri ile karşılaştırıldığında, insan kolon
kanseri hücrelerinde kemoterapötik ilaçların antikanser etkilerini artırmada
daha verimli olduğunu göstermektedir.

References

  • [1] Müller R. H, Jacobs C. and Kayser O., “Nanosuspensions as particulate drug formulations in therapy: Rationale for development and what we can expect for the future”, Adv Drug Deliv Rev., 47: 3–19, (2001)[2] Jaracz S., Chen J., Kuznetsova L. V. and Ojima I., “Recent advances in tumor-targeting anticancer drug conjugates”, Bioorg. Med. Chem., 13: 5043–5054, (2005) [3] Müller R. H. and Peters K., “Nanosuspensions for the formulation of poorly soluble drugs: I. Preparation by a size-reduction technique”, Int J Pharm., 160: 229–237, (1998)[4] Rizzo L. Y., Theek B., Storm G., Kiessling F. and Lammers T., “Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications”, Curr. Opin. Biotechnol., 24: 1159–1166, (2013)[5] Shapira A., Livney Y. D., Broxterman H. J. and Assaraf Y. G., “Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance”, Drug Resist Updat., 14: 150–163, (2011)[6] Sun C., Lee J. S. and Zhang M., “Magnetic nanoparticles in MR imaging and drug delivery”, Adv Drug Deliv Rev., 60: 1252–1265, (2008)[7] Park J. H., von Maltzahn G., Ruoslahti E., Bhatia S. N. and Sailor M. J., “Micellar hybrid nanoparticles for simultaneous magneto-fluorescent imaging and drug delivery”, Angew Chem Int Ed Engl., 47: 7284−7288, (2008)[8] Sykes E. A., Chen J., Zheng G. and Chan W. C., “Investigating the Impact of Nanoparticle Size on Active and Passive Tumor Targeting Efficiency”, ACS Nano., 8: 5696−706, (2014)[9] Danhier F., Feron O. and Préat V., “To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery”, J. Control. Release, 148: 135–146, (2010)[10] Laurent S., Forge D., Port M., Roch A., Robic C., Elst L. V. and Muller R. N., “Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications”, Chem. Rev., 108: 2064–2110, (2008)[11] Uchiyama K., Nagayasu A., Yamagiwa Y., Nishida T., Harashima H. and Kiwada H., “Effects of the size and fluidity of liposomes on their accumulation in tumors: A presumption of their interaction with tumors”, Int. J. Pharm., 121: 195–203, (1995)[12] Nagayasu A., Shimooka T., Kinouchi Y., Uchiyama K., Takeichi Y. and Kiwada H., “Effects of fluidity and vesicle size on antitumor activity and myelosuppressive activity of liposomes loaded with daunorubicin”, Biol Pharm Bull., 17: 935–939, (1994)[13] Nagayasu A., Uchiyama K. and Kiwada H., “The size of liposomes: a factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs”, Adv Drug Deliv Rev., 40: 75–87, (1999)[14] Gao J. H., Gu H. W. and Xu B., “Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications”, Acc. Chem. Res., 42: 1097−1107, (2009)[15] Lee J. E., Lee N., Kim H., Kim J., Choi S. H., Kim J. H., Kim T., Song I. C., Park S. P., Moon W. K. and Hyeon T., “Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery”, J. Am. Chem. Soc., 132: 552−557, (2010)[16] Daglioglu C. and Okutucu B., “Synthesis and characterization of AICAR and DOX conjugated multifunctional nanoparticles as a platform for synergistic inhibition of cancer cell growth”, Bioconjug. Chem., 27: 1098−1111, (2016) [17] Daglioglu C., “Enhancing tumor cell response to multidrug resistance with pH-sensitive quercetin and doxorubicin conjugated multifunctional nanoparticles”, Colloids Surf. B Biointerfaces, 156: 175–185, (2017)[18] Daglioglu C., “Environmentally responsive dual-targeting nanoparticles: improving drug accumulation in cancer cells as a way of preventing anticancer drug efflux”, J. Pharma. Sci., 107: 934-941, (2018)[19] Russell-Jones G., McTavish K., McEwan J., Rice J. and Nowotnik D., “Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumors”, J. Inorg. Biochem., 98: 1625–1633, (2004)[20] Daglioglu C. and Okutucu B., “Therapeutic effects of AICAR and DOX conjugated multifunctional nanoparticles in sensitization and elimination of cancer cells via survivin targeting”, Pharm. Res., 34: 175−84, (2017)[21] Daglioglu C., “İlaç Taşıma Sistemleri olarak Nanopartiküller kullanılarak Pasif ve Aktif Tümör Hedeflemelerinin Karşılaştırmalı İncelenmesi”, Akademik Platform Mühendislik ve Fen Bilimleri Dergisi, 6: 01-07, (2018)
There are 1 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Cenk Dağlıoğlu 0000-0002-3857-2317

Publication Date March 1, 2020
Submission Date December 12, 2018
Published in Issue Year 2020 Volume: 23 Issue: 1

Cite

APA Dağlıoğlu, C. (2020). İnsan Kolon Kanseri Hücrelerine Karşı İnorganik Nanopartikül-Temelli İlaç Taşıyıcı Sistemlerin Kullanılması: Partikül Büyüklüğünün Antikanser Aktivitesine Etkisi. Politeknik Dergisi, 23(1), 171-179. https://doi.org/10.2339/politeknik.496351
AMA Dağlıoğlu C. İnsan Kolon Kanseri Hücrelerine Karşı İnorganik Nanopartikül-Temelli İlaç Taşıyıcı Sistemlerin Kullanılması: Partikül Büyüklüğünün Antikanser Aktivitesine Etkisi. Politeknik Dergisi. March 2020;23(1):171-179. doi:10.2339/politeknik.496351
Chicago Dağlıoğlu, Cenk. “İnsan Kolon Kanseri Hücrelerine Karşı İnorganik Nanopartikül-Temelli İlaç Taşıyıcı Sistemlerin Kullanılması: Partikül Büyüklüğünün Antikanser Aktivitesine Etkisi”. Politeknik Dergisi 23, no. 1 (March 2020): 171-79. https://doi.org/10.2339/politeknik.496351.
EndNote Dağlıoğlu C (March 1, 2020) İnsan Kolon Kanseri Hücrelerine Karşı İnorganik Nanopartikül-Temelli İlaç Taşıyıcı Sistemlerin Kullanılması: Partikül Büyüklüğünün Antikanser Aktivitesine Etkisi. Politeknik Dergisi 23 1 171–179.
IEEE C. Dağlıoğlu, “İnsan Kolon Kanseri Hücrelerine Karşı İnorganik Nanopartikül-Temelli İlaç Taşıyıcı Sistemlerin Kullanılması: Partikül Büyüklüğünün Antikanser Aktivitesine Etkisi”, Politeknik Dergisi, vol. 23, no. 1, pp. 171–179, 2020, doi: 10.2339/politeknik.496351.
ISNAD Dağlıoğlu, Cenk. “İnsan Kolon Kanseri Hücrelerine Karşı İnorganik Nanopartikül-Temelli İlaç Taşıyıcı Sistemlerin Kullanılması: Partikül Büyüklüğünün Antikanser Aktivitesine Etkisi”. Politeknik Dergisi 23/1 (March 2020), 171-179. https://doi.org/10.2339/politeknik.496351.
JAMA Dağlıoğlu C. İnsan Kolon Kanseri Hücrelerine Karşı İnorganik Nanopartikül-Temelli İlaç Taşıyıcı Sistemlerin Kullanılması: Partikül Büyüklüğünün Antikanser Aktivitesine Etkisi. Politeknik Dergisi. 2020;23:171–179.
MLA Dağlıoğlu, Cenk. “İnsan Kolon Kanseri Hücrelerine Karşı İnorganik Nanopartikül-Temelli İlaç Taşıyıcı Sistemlerin Kullanılması: Partikül Büyüklüğünün Antikanser Aktivitesine Etkisi”. Politeknik Dergisi, vol. 23, no. 1, 2020, pp. 171-9, doi:10.2339/politeknik.496351.
Vancouver Dağlıoğlu C. İnsan Kolon Kanseri Hücrelerine Karşı İnorganik Nanopartikül-Temelli İlaç Taşıyıcı Sistemlerin Kullanılması: Partikül Büyüklüğünün Antikanser Aktivitesine Etkisi. Politeknik Dergisi. 2020;23(1):171-9.