Research Article
BibTex RIS Cite

Numerical and Experimental Investigation of NACA-0018 Wind Turbine Aerofoil Model Performance for Different Aspect Ratios

Year 2020, Volume: 23 Issue: 2, 371 - 381, 01.06.2020
https://doi.org/10.2339/politeknik.500043

Abstract

Wind turbines
used in the conversion of wind energy into useful energy consist of different
aerofoil models. One of the most important factors affecting turbine
performance is the change in aerodynamic performance of the aerofoil model. The
aerodynamic performance of the NACA-0018 aerofoil model, which is likely to be
used in wind turbine blades, has been investigated numerically and
experimentally. Numerical studies for performance analysis were studied using
ANSYS FluentTM 14,5 software, which is based on computational fluid
dynamics (CFD), using SST (Shear Stress Transport) turbulence model. In
numerical studies, Reynolds (Re) number was accepted as 5,7x104, and
the analyses were repeated for every 2,5° angle of attack from 0° to 60°.
Experimental studies were carried out in the open loop wind tunnel between
0°-60° for every 5° angle of attack. In both studies, the lift coefficient (CL),
drag coefficient (CD) and aerodynamic efficiency (CL/CD)
values of the NACA-0018 aerofoil model were determined for selected attack
angles. According to the numerical results, a stall occurred at 32,5° angle of
attack for the AR1 model, while at 25° for the AR2 model. Considering with the
results of experimental study for AR1 and AR2, the CL value of both
models was 0,41% and 2,71% better than the data obtained as a result of
numerical studies, respectively. Similarly, it was concluded that the
experimentally obtained CD values were 6.35% and 5.16% better than
the numerical data for the AR1 and AR2 models, individually. As a result of
numerical study, the CL/CD values obtained for AR1 and
AR2 were 3.86% and 12.04% higher for each aerofoil model than the experimental
data for the same structures. As a consequence of both experimental and
numerical study, the aerodynamic efficiency of the AR1 structure from the
structures of NACA-0018 aerofoil models having two different aspect ratios had
a significant advantage compared to the AR2 before and after the stall.

References

  • [1]Čarija Z., Marušić E., Novak Z. and Fućak S., “Numerical analysis of aerodynamic characteristics of a bumped leading edge turbine blade”, Engineering Review, 34(2): 93–101, (2014).[2] Düz H. ve Yıldız S., “Numerical performance analyses of different airfoils for use in wind turbines”, International Journal of Renewable Energy Development, 7(2): 151–157, (2018).[3] Erişen A. ve Bakırcı M., “NACA 0012 ve NACA 4412 kanat kesitlerinin yeniden tasarlanarak HAD ile analiz edilmesi”, Mühendislik ve Teknoloji Bilimleri Dergisi, 1: 50–82, (2014).[4] Gugliya S. P., Jaiswal R. Y., Chhajed B. A., Jain V. S., Thakare R. H. (2014). CFD analysis of airfoil NACA 0012. International Journal of Moden Trends in Engineering and Research. 1605-1609, Maharashtra, India, (2018).[5] Patel K.S., Patel S.B., Patel U.B. and Ahuja P.A.P., “CFD analysis of an aerofoil. International Journal of Engineering Research, 3(3): 154–158, (2014).[6] Şahin İ. ve Acır A. “Numerical and experimental investigations of lift and drag performances of NACA 0015 wind turbine airfoil”, International Journal of Materials, Mechanics and Manufacturing, 3(1): 22–25, (2015). [7] Chen J., Wang Q., Zhang S., Eecen P. and Grasso F., “A new direct design method of wind turbine airfoils and wind tunnel experiment”, Applied Mathematical Modelling, 40(3): 2002–2014, (2016).[8] Maulana M.I., Qaedy T.M.A. and Nawawi M., “Design analysis of vertical wind turbine with airfoil variation”, Proceeding of the 4th International Conference and Exhibition on Sustainable Energy and Advanced materials (ICE-SEAM 2015), 1717: 1–6, (2016).[9] Saad M.M.M., Bin Mohd S., Zulkafli M.F. and Shibani W.M.E., “Numerical analysis for comparison of aerodynamic characteristics of six airfoils’’, AIP Conf. Proc., 1831(1): 20004, (2017).[10] Suvanjumrat C., “Comparison of Turbulence Models for Flow Past NACA0015 Airfoil Using OpenFOAM”. Engineering Journal, 21(3), 207–221, (2017). [11] Chumbre V, Rushikesh T, Umatar S and Kerur S.M., “CFD analysis of airfoil sections”, International Research Journal of Engineering and Technology, 5(7): 349–353, (2018).[12] Tanürün, H.E ve Acır, A.,” Modifiye edilmiş NACA-0015 kanat yapısında tüberkül etkisinin sayısal analizi”, Politeknik Dergisi, (2018,) (Baskıda).[13] Xiao S. and Chen Z., “Investigation of Flow over the Airfoil NACA –10-35 with Various Angle of Attack” 2nd International Conference on Mechanical, Material and Aerospace Engineering, 1–10, Wuhan, China, (2018). [14] Ameur H. and Boukhadia K.,. “Numerical Study of Air Flow over a NACA 0015 Wind Turbine Airfoil”, Preprints Journal, (2018), (Baskıda).[15] Rao S.K., Chakravarthy, A.M., Babu, S.G. and Rajesh M., “Modelling And Simulation Of Aerofoil Element”, International Research Journal of Engineering and Tecnology, 5(2): 2056–2059, (2018).[16] Anyoji M., Wakui S., Hamada D. and Aono, H.. “Experimental Study of Owl-Like Airfoil Aerodynamics at Low Reynolds Numbers”, Journal of Flow Control, Measurement & Visualization, 6(3): 185–197, (2018).[17] Rogowski K., Hansen M.O.L., Hansen R., Piechna J. and Lichota, P., "Detached Eddy Simulation Model for the DU-91-W2-250 Airfoil", Journal of Physics: Conference Series, 1037(2); 1–9, (2018).[18] Gore K., Gote A., Govale A., Kanawade A. and Humane S., “Aerodtnamic Analysis of Aircraft Wings Using CFD”, International Research Journal of Engineering and Tecnology, 5(6): 639–644, (2018).[19] http://airfoiltools.com/airfoil/naca4digit. Son erişim tarihi: 13.12.2018.[20] Ansys Fluent 2012. Shear-Stress Transport (SST) k-ω model, Ansys Fluent 12 theory guide. http://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node67.htm. Son erişim tarihi: 13.12.2018.[21] https://www.sharcnet.ca/Software/Ansys/17.0/en-us/help/flu_ug/flu_ug_mesh_quality.html. Son erişim tarihi: 19.12.2018[22] Ariff M., Salim S. M., Chea, S. C., ''Wall Y + Approach for Dealing with Turbulent Flow Over a Surface Mounted Cube: Part 1 – Low Reynolds Number'', Seventh International Conference on CFD in the Minerals and Process Industries, Australia, 1–6, (2009)[23] Hanumanthu and Rao S.V.K., “CFD Study of Solids Wind Tunnel Wall Effects on Wings Characteristics”, Indian Journal of Science and Technology, 9(45): 1–5, (2016).[24] Medici D., Ivanell S., Dahlberg A. J. and Alfredsson H. P., “The Upstream flow a Wind Turbine: Blockage Effect”, Wind Energy, 14(5), 691–697, (2011).[25] Gunt 2018. HM170 Open cycle wind turbine test equipment data sheet. https://www.gunt.de/images/datasheet/769/HM-170-Open-wind-tunnel-gunt-769-pdf_1_en-GB.pdf. Son erişim tarihi: 01.10.2018.

Farklı Açıklık Oranlarındaki NACA-0018 Rüzgâr Türbini Kanat Modeli Performansının Sayısal ve Deneysel İncelenmesi

Year 2020, Volume: 23 Issue: 2, 371 - 381, 01.06.2020
https://doi.org/10.2339/politeknik.500043

Abstract

Rüzgâr enerjisinin yararlı enerjiye
dönüştürülmesinde kullanılan rüzgâr türbinleri, farklı kanat modellerinden
oluşmaktadır. Türbin performansını etkileyen en önemli etkenlerden biri kanat
modeli aerodinamik performansının değişimidir. Rüzgâr türbin kanatlarında
kullanılması muhtemel olan NACA-0018 kanat modelinin aerodinamik performansı bu
çalışma kapsamında, sayısal ve deneysel olarak incelenmiştir. Performans
analizi için yapılan sayısal çalışmalar hesaplamalı akışkanlar dinamiği (HAD)
esasına göre çalışan ANSYS FluentTM 14,5 yazılımında SST (Shear
Stress Transport) türbülans modeli altında incelenmiştir. Sayısal çalışmalarda
Reynolds (Re) sayısı 5,7x104 kabul edilmiş,  0°’den 60°’ye kadar her 2,5°’lik hücum açısı
için analizler tekrarlanmıştır. Deneysel çalışmalar ise açık çevrimli rüzgâr
tünelinde her 5° hücum açısı için 0°-60° aralığında gerçekleştirilmiştir. Her
iki çalışmada da belirlenen hücum açılarında kanat modelinin kaldırma katsayısı
(CL), sürükleme katsayısı (CD) ve aerodinamik verimlilik
(CL/CD) değerleri bulunmuştur. Sayısal sonuçlara göre
açıklık oranı-1 (AR1) kanat modelinde 32,5°’de irtifa kaybı gözlenirken,
açıklık oranı-2 (AR2) kanat modelinde ise 25°’de irtifa kaybı söz konusudur.
AR1 ve AR2 kanat modelleri için yapılan deneysel çalışma sonuçlarına göre her
iki kanadın CL değeri, sayısal çalışmalar neticesinde elde edilen
verilerden sırasıyla %0,41 ve %2,71 oranında daha olumludur. Benzer şekilde
deneysel olarak elde edilen CD değerlerinin AR1 ve AR2 kanat modeli
için sayısal verilerden sırasıyla %6,35 ve %5,16 kadar daha iyi olduğu sonucuna
ulaşılmıştır. Sayısal çalışma sonucu AR1 ve AR2 kanat modelleri için elde
edilen CL/CD değerleri aynı yapılar için ölçülen deneysel
verilerden her bir kanat modeli için sırasıyla %3,86 ve %12,04 daha yüksektir.
Hem deneysel hem de sayısal çalışma sonucunda NACA-0018 kanat modelinin iki
farklı açıklık oranına sahip yapılarından AR1 yapısının aerodinamik verimi,
irtifa kaybı öncesi ve sonrasında AR2 kanadına göre belirgin bir avantaja
sahiptir. 

References

  • [1]Čarija Z., Marušić E., Novak Z. and Fućak S., “Numerical analysis of aerodynamic characteristics of a bumped leading edge turbine blade”, Engineering Review, 34(2): 93–101, (2014).[2] Düz H. ve Yıldız S., “Numerical performance analyses of different airfoils for use in wind turbines”, International Journal of Renewable Energy Development, 7(2): 151–157, (2018).[3] Erişen A. ve Bakırcı M., “NACA 0012 ve NACA 4412 kanat kesitlerinin yeniden tasarlanarak HAD ile analiz edilmesi”, Mühendislik ve Teknoloji Bilimleri Dergisi, 1: 50–82, (2014).[4] Gugliya S. P., Jaiswal R. Y., Chhajed B. A., Jain V. S., Thakare R. H. (2014). CFD analysis of airfoil NACA 0012. International Journal of Moden Trends in Engineering and Research. 1605-1609, Maharashtra, India, (2018).[5] Patel K.S., Patel S.B., Patel U.B. and Ahuja P.A.P., “CFD analysis of an aerofoil. International Journal of Engineering Research, 3(3): 154–158, (2014).[6] Şahin İ. ve Acır A. “Numerical and experimental investigations of lift and drag performances of NACA 0015 wind turbine airfoil”, International Journal of Materials, Mechanics and Manufacturing, 3(1): 22–25, (2015). [7] Chen J., Wang Q., Zhang S., Eecen P. and Grasso F., “A new direct design method of wind turbine airfoils and wind tunnel experiment”, Applied Mathematical Modelling, 40(3): 2002–2014, (2016).[8] Maulana M.I., Qaedy T.M.A. and Nawawi M., “Design analysis of vertical wind turbine with airfoil variation”, Proceeding of the 4th International Conference and Exhibition on Sustainable Energy and Advanced materials (ICE-SEAM 2015), 1717: 1–6, (2016).[9] Saad M.M.M., Bin Mohd S., Zulkafli M.F. and Shibani W.M.E., “Numerical analysis for comparison of aerodynamic characteristics of six airfoils’’, AIP Conf. Proc., 1831(1): 20004, (2017).[10] Suvanjumrat C., “Comparison of Turbulence Models for Flow Past NACA0015 Airfoil Using OpenFOAM”. Engineering Journal, 21(3), 207–221, (2017). [11] Chumbre V, Rushikesh T, Umatar S and Kerur S.M., “CFD analysis of airfoil sections”, International Research Journal of Engineering and Technology, 5(7): 349–353, (2018).[12] Tanürün, H.E ve Acır, A.,” Modifiye edilmiş NACA-0015 kanat yapısında tüberkül etkisinin sayısal analizi”, Politeknik Dergisi, (2018,) (Baskıda).[13] Xiao S. and Chen Z., “Investigation of Flow over the Airfoil NACA –10-35 with Various Angle of Attack” 2nd International Conference on Mechanical, Material and Aerospace Engineering, 1–10, Wuhan, China, (2018). [14] Ameur H. and Boukhadia K.,. “Numerical Study of Air Flow over a NACA 0015 Wind Turbine Airfoil”, Preprints Journal, (2018), (Baskıda).[15] Rao S.K., Chakravarthy, A.M., Babu, S.G. and Rajesh M., “Modelling And Simulation Of Aerofoil Element”, International Research Journal of Engineering and Tecnology, 5(2): 2056–2059, (2018).[16] Anyoji M., Wakui S., Hamada D. and Aono, H.. “Experimental Study of Owl-Like Airfoil Aerodynamics at Low Reynolds Numbers”, Journal of Flow Control, Measurement & Visualization, 6(3): 185–197, (2018).[17] Rogowski K., Hansen M.O.L., Hansen R., Piechna J. and Lichota, P., "Detached Eddy Simulation Model for the DU-91-W2-250 Airfoil", Journal of Physics: Conference Series, 1037(2); 1–9, (2018).[18] Gore K., Gote A., Govale A., Kanawade A. and Humane S., “Aerodtnamic Analysis of Aircraft Wings Using CFD”, International Research Journal of Engineering and Tecnology, 5(6): 639–644, (2018).[19] http://airfoiltools.com/airfoil/naca4digit. Son erişim tarihi: 13.12.2018.[20] Ansys Fluent 2012. Shear-Stress Transport (SST) k-ω model, Ansys Fluent 12 theory guide. http://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node67.htm. Son erişim tarihi: 13.12.2018.[21] https://www.sharcnet.ca/Software/Ansys/17.0/en-us/help/flu_ug/flu_ug_mesh_quality.html. Son erişim tarihi: 19.12.2018[22] Ariff M., Salim S. M., Chea, S. C., ''Wall Y + Approach for Dealing with Turbulent Flow Over a Surface Mounted Cube: Part 1 – Low Reynolds Number'', Seventh International Conference on CFD in the Minerals and Process Industries, Australia, 1–6, (2009)[23] Hanumanthu and Rao S.V.K., “CFD Study of Solids Wind Tunnel Wall Effects on Wings Characteristics”, Indian Journal of Science and Technology, 9(45): 1–5, (2016).[24] Medici D., Ivanell S., Dahlberg A. J. and Alfredsson H. P., “The Upstream flow a Wind Turbine: Blockage Effect”, Wind Energy, 14(5), 691–697, (2011).[25] Gunt 2018. HM170 Open cycle wind turbine test equipment data sheet. https://www.gunt.de/images/datasheet/769/HM-170-Open-wind-tunnel-gunt-769-pdf_1_en-GB.pdf. Son erişim tarihi: 01.10.2018.
There are 1 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Himmet Erdi Tanürün 0000-0001-7814-7043

İsmail Ata This is me

Mehmet Emin Canlı This is me

Adem Acır This is me

Publication Date June 1, 2020
Submission Date December 20, 2018
Published in Issue Year 2020 Volume: 23 Issue: 2

Cite

APA Tanürün, H. E., Ata, İ., Canlı, M. E., Acır, A. (2020). Farklı Açıklık Oranlarındaki NACA-0018 Rüzgâr Türbini Kanat Modeli Performansının Sayısal ve Deneysel İncelenmesi. Politeknik Dergisi, 23(2), 371-381. https://doi.org/10.2339/politeknik.500043
AMA Tanürün HE, Ata İ, Canlı ME, Acır A. Farklı Açıklık Oranlarındaki NACA-0018 Rüzgâr Türbini Kanat Modeli Performansının Sayısal ve Deneysel İncelenmesi. Politeknik Dergisi. June 2020;23(2):371-381. doi:10.2339/politeknik.500043
Chicago Tanürün, Himmet Erdi, İsmail Ata, Mehmet Emin Canlı, and Adem Acır. “Farklı Açıklık Oranlarındaki NACA-0018 Rüzgâr Türbini Kanat Modeli Performansının Sayısal Ve Deneysel İncelenmesi”. Politeknik Dergisi 23, no. 2 (June 2020): 371-81. https://doi.org/10.2339/politeknik.500043.
EndNote Tanürün HE, Ata İ, Canlı ME, Acır A (June 1, 2020) Farklı Açıklık Oranlarındaki NACA-0018 Rüzgâr Türbini Kanat Modeli Performansının Sayısal ve Deneysel İncelenmesi. Politeknik Dergisi 23 2 371–381.
IEEE H. E. Tanürün, İ. Ata, M. E. Canlı, and A. Acır, “Farklı Açıklık Oranlarındaki NACA-0018 Rüzgâr Türbini Kanat Modeli Performansının Sayısal ve Deneysel İncelenmesi”, Politeknik Dergisi, vol. 23, no. 2, pp. 371–381, 2020, doi: 10.2339/politeknik.500043.
ISNAD Tanürün, Himmet Erdi et al. “Farklı Açıklık Oranlarındaki NACA-0018 Rüzgâr Türbini Kanat Modeli Performansının Sayısal Ve Deneysel İncelenmesi”. Politeknik Dergisi 23/2 (June 2020), 371-381. https://doi.org/10.2339/politeknik.500043.
JAMA Tanürün HE, Ata İ, Canlı ME, Acır A. Farklı Açıklık Oranlarındaki NACA-0018 Rüzgâr Türbini Kanat Modeli Performansının Sayısal ve Deneysel İncelenmesi. Politeknik Dergisi. 2020;23:371–381.
MLA Tanürün, Himmet Erdi et al. “Farklı Açıklık Oranlarındaki NACA-0018 Rüzgâr Türbini Kanat Modeli Performansının Sayısal Ve Deneysel İncelenmesi”. Politeknik Dergisi, vol. 23, no. 2, 2020, pp. 371-8, doi:10.2339/politeknik.500043.
Vancouver Tanürün HE, Ata İ, Canlı ME, Acır A. Farklı Açıklık Oranlarındaki NACA-0018 Rüzgâr Türbini Kanat Modeli Performansının Sayısal ve Deneysel İncelenmesi. Politeknik Dergisi. 2020;23(2):371-8.

Cited By








Hybrid Vertical Wind Turbine Design and Analysis
Afyon Kocatepe University Journal of Sciences and Engineering
https://doi.org/10.35414/akufemubid.1020732