Research Article
BibTex RIS Cite

On the Compression Properties and Erosion-Corrosion Behaviour of Al 6061/15%Sicp Composite

Year 2020, Volume: 23 Issue: 2, 415 - 425, 01.06.2020
https://doi.org/10.2339/politeknik.535022

Abstract

Aluminum alloys and composites 
are used in automobile and aerospace industries due to good mechanical
properties, higher corrosion resistance and light weight. The compression test
of materials at elevated temperature is useful to study the flow stress,
workability, and the analysis of the processing conditions. In this paper, ring
specimens produced from Al 6061 /15%SiCp composite  were subjected to uniaxial hot compression
tests to invistigate the deformation behavior of the material. The tests were performed
at high temperatures ranged from 300 oC to 500 °C and strain rates
of 0.008 s−1 to 2.7 s−1.  The flow stress-strain curve at different
strain rates and temperatures was determined. The regression analysis was
performed to predict the flow stress during the compression test. The comparison
between  the experimental and theoretical
results was also conducted. In addition, finite element method was applied to simulate and validate
the compression behavior of the composite ring. Furthermore, the
erosion-corrosion tests by slurry pot method were conducted to examine the influence
of SiC particles on erosion corrosion resistance of the material.
The results showed that the flow stress of
the Al6061/15/vol.%SiCp composite is correlated directly with
temperature and strain rate. Also, the erosion corrosion resistance increased
with adding SiC particles to Al 6061 alloy.

References

  • 1. Osama M. Irfan and Hanafy M. Omar, (2017), Experimental Study and Prediction of Erosion-Corrosion of AA6066 Aluminum Using Artificial Neural Network, International Journal of Mechanical & Mechatronics Engineering IJMME, Vol:17 No:06, pp. 1-14.
  • 2. Xiao Pu, LI. ; LIU Chong, Y.; Xiao Wei, SUN; Ming Zhen, MA; Ri Ping, LIU. (2016). Hot deformation behavior and processing maps of AA6061-10 vol.% SiC composite prepared by spark plasma sintering, SCIENCE CHINA Technological Sciences 59(6): 980–988.
  • 3. Gopalakrishnan, S.; Murugan, N. (2012). Production and wear characterization of AA 6061-matrix titanium carbide particulate reinforced composite by enhanced stir casting method, Compos Part B-Engineering 43:302–308.
  • 4. Ashwath, P.; Xavior, M.A. Processing methods and property evaluation of Al2O3 and SiC reinforced metal matrix composites based on aluminium 2xxx alloys. J. Mater. Res. (2016), 31, 1201–1219.
  • 5. Zhang, Q.; Ma, X. Y.; Wu, G. H. (2013). Interfacial microstructure of SiCp/Al composite produced by the pressureless infiltration technique. Ceram Int 39: 4893–4897.
  • 6. Zhang, J. T.; Liu, L. S.; Zhai, P. C. (2008). Effect of fabrication process on the microstructure and dynamic compressive properties of SiCp/Al composites fabricated by spark plasma sintering, Material Letters, 62: 443–446.
  • 7. Reddy, P.S.; Kesavan, R.; Vijaya Ramnath, B. Investigation of mechanical properties of aluminum 6061-silicon carbide, boron carbide metal matrix composite. Silicon (2017), 9, 1– 8.
  • 8. El-Sabbagh, A.; Soliman, M.; Taha, M. (2012). Hot rolling behavior of stir-cast Al 6061 and Al 6082 alloys-SiC fine particulates reinforced composites. J Mater Process Tech 212: 497–508.
  • 9. Taha, M. A.; El-Mahallawy, N. A.; El-Sabbagh, A. M. (2008). Some Experimental Data on Workability of Aluminum-Particulate-Reinforced Metal Matrix Composites, J. Mater. Process. Techno 202 (1–3): 380–385.
  • 10. Zabihi, M.; Toroghinejad, M. R.; Shafyei, A. (2013). Application of powder metallurgy and hot rolling processes for manufacturing aluminum/ alumina composite strips. Mat Sci Eng A-Struct. 560: 567–574.
  • 11. Agus Pramono; Lembit Kommel; Lauri Kollo; Renno Veinthal. (2016). The Aluminum Based Composite Produced by Self-Propagating High Temperature Synthesis, MATERIALS SCIENCE 22(1): 41-43.
  • 12. Pitchayyapillai, G.; Seenikannan, P.; Raja, K.; Chandrasekaran, K. Al6061 hybrid metal matrix composite reinforced with alumina and molybdenum disulphide. Adv. Mater. Sci. Eng. (2016), 2016, 6127624.
  • 13. Ch Hima Gireesh, K. G. Durga Prasad, and Koona Ramji, Experimental Investigation on Mechanical Properties of an Al6061 Hybrid Metal Matrix Composite, J. Compos. Sci. (2018), 2, 49; doi:10.3390/jcs2030049.
  • 14. Chang, C. I.; Lee, C. J.; Huang, J. C. (2004). Relationship between grain size and Zener–Holloman parameter during friction stir processing in AZ31 Mg alloys, Scripta Materialia 51: 509–514.
  • 15. Sellars, C. M. (2011). On physical metallurgy of thermo-mechanical processing of steels and other metals, Proc. Of Int. Conference THERMEC 88, Tokyo, 448-457.
  • 16. Srivatsan, T. S.; Prakash, A. (1995). The quasi-static fracture behavior of an aluminum alloy metal-matrix composite. Composites Science and Technology, 53: 307–315.
  • 17. Dipti Kanta Das; Purna Chandra Mishra; Saranjit Singh; Swati Pattanaik. (20140. Fabrication and heat treatment of ceramic reinforced aluminum matrix composites – A Review, International Journal of Mechanical and Materials Engineering 1:6.
  • 18. Hung, N. P.; Boey, F. Y. C.; Khor, K. A.; Oh, C. A.; Lee, H. F. (1995). Machinability of cast and powder-formed aluminum alloys reinforced with SiC particles. Journal of Materials Processing Technology 48: 291–297.
  • 19. Song, W. Q.; Krauklis, P.; Mouritz, A. P.; Bandyopadhyay, S. (1995). The effect of thermal ageing on the abrasive wear behavior of age hardening 2014 Al/ Sic and 6061 Al/SIC composites. Wear 185: 125–130.
  • 20. Kalkanli, A.; Yilmaz, S. (2008). Synthesis and characterization of aluminum alloy 7075 reinforced with silicon carbide particulates. Materials and Design 29: 775–780.
  • 21. Rao, R. N., Das, S.; Mondal, D.P.; Dixit, G. (2009). Dry sliding wear behavior of cast high strength aluminum alloy (Al–Zn–Mg) and hard particle composites. Wear 267: 1688–1695.
  • 22. Nagaral M, Auradi V, Parashivamurthy KI, Kori SA (2016) A Comparative Study on Wear Behavior of Al 6061-6% SiC and Al6061-6% Graphite Composites. J Appl Mech Eng 5: 227. doi: 10.4172/2168-9873.1000227
  • 23. Nagaral M, Attar S, Reddappa HN, Auradi V, Suresh Kumar et al. (2015) Mechanical behaviour of Al7025-B4C particulate reinforced composites. J. Applied Mechanical Engineering 4: 6
  • 24. Suresh S, Shenbaga VM, Vettivel SC, Selvakumar N (2014) Mechanical behaviour and wear prediction of stir cast Al-TiB2 composites using response surface methodology. Materials and Design 59: 383-396.
  • 25. Umanath K, Palanikumar K, Selvamani ST (2013) Analysis of dry sliding wear behavior of Al6061-SiC-Al2O3 hybrid metal matrix composites. Composites Part-B 53: 159-168.
  • 26. Naveed, M.; Khan, A.R.A. Ultimate Tensile Strength of Heat Treated Hybrid Metal Matrix Composites. Int. J. Sci. Res. (2015), 4, 146–151.
  • 27. Chawla, K. Fibrous Materials, 2nd ed.; Cambridge University Press: Cambridge, UK, (2016).
  • 28. Osama M. Irfan, Fahad A. Al-Mufadi, and F. Djavanroodi, Surface Properties and Erosion–Corrosion Behavior of Nanostructured Pure Titanium in Simulated Body Fluid, Metallurgical And Materials Transactions A, V. 49A, Nov. (2018), 5695 – 5704.
  • 29. Wei, S. H.; Liu, Y. Q.; Nie, J. H.; Zuo, T. Z.; Ma, L.; Fan, J. Z. (2016). Hot Deformation Behavior and Processing Map of 25%SiCp/2009A1 Composite, Materials Science Forum 849: 409-415.
  • 30. Sivakesavam, O. (1994). Effect of Processing History and Initial Microstructure on the Hot Working of Mg, Mg–Zn–Mn, Mg–Li–Al, and Mg–Li–Al–Zr Alloys: Characterization with Processing Maps, Ph.D. Thesis, Indian Institute of Science, Bangalore.
  • 31. Jingli Duan; YuanbiaoTan; LiyuanJi; Wenchang Liun; Jing wu Zhang; Riping Liu. (2015). Hot deformation behavior of 51.1 Zr–40.2 Ti–4.5 Al–4.2 V alloy in the single β phase field, Progress in Natural Science, Materials International 25:34–41.
  • 32. Ganesan, G.; Raghukandan, K.; Karthikeyan, R. (2003). Formability study on Al/SiC composites. Mater Sci Forum, 437(438): 227–230.
  • 33. Zhang, P.; Li, F. G.; Wan, Q. (2010). Constitutive equation and processing map for hot deformation of SiC particles reinforced metal matrix composites. J Mater Eng Performance 19: 1290–1297.
  • 34. Zhang, H.; Lin, G. Y.; Peng, D. S. (2004). Dynamic and static softening behaviors of aluminum alloys during multistage hot deformation. J Mater Process Tech 148: 245–249.
  • 35. Li, H. Z.; Wang, H. J.; Zeng, M. 2011. Forming behavior and workability of 6061/B4Cp composite during hot deformation. Compos Sci Technology 71: 925–930.
  • 36. Yar, A. A.; Montazerian, M.; Abdizadeh, H. (2009). Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO. J Alloys Compd 484: 400–404.

On the Compression Properties and Erosion-Corrosion Behaviour of Al 6061/15%Sicp Composite

Year 2020, Volume: 23 Issue: 2, 415 - 425, 01.06.2020
https://doi.org/10.2339/politeknik.535022

Abstract

Aluminum alloys and composites 
are used in automobile and aerospace industries due to good mechanical
properties, higher corrosion resistance and light weight. In this paper, ring
specimens produced from Al 6061 /15%SiCp composite  were subjected to uniaxial hot compression
test to invistigate the deformation behavior of the material. The tests were performed
at high temperatures ranged from 300 oC to 500 °C and strain rates
of 0.008 s−1 to 2.7 s−1.  The flow stress-strain curve at different
strain rates and temperatures was determined. The regression analysis was
performed to predict the flow stress during the compression test. The comparison
between  the experimental and theoretical
results was also conducted. In addition, finite element method was applied to simulate and validate
the compression behavior of the composite ring. Furthermore, the
erosion-corrosion tests by slurry pot method were conducted to examine the influence
of SiC particles on erosion corrosion resistance of the material.
The results showed that the flow stress of
the Al6061/15/vol.%SiCp composite is correlated directly with
temperature and strain rate. Also, the erosion corrosion resistance increased
with adding SiC particles to Al 6061 alloy.

References

  • 1. Osama M. Irfan and Hanafy M. Omar, (2017), Experimental Study and Prediction of Erosion-Corrosion of AA6066 Aluminum Using Artificial Neural Network, International Journal of Mechanical & Mechatronics Engineering IJMME, Vol:17 No:06, pp. 1-14.
  • 2. Xiao Pu, LI. ; LIU Chong, Y.; Xiao Wei, SUN; Ming Zhen, MA; Ri Ping, LIU. (2016). Hot deformation behavior and processing maps of AA6061-10 vol.% SiC composite prepared by spark plasma sintering, SCIENCE CHINA Technological Sciences 59(6): 980–988.
  • 3. Gopalakrishnan, S.; Murugan, N. (2012). Production and wear characterization of AA 6061-matrix titanium carbide particulate reinforced composite by enhanced stir casting method, Compos Part B-Engineering 43:302–308.
  • 4. Ashwath, P.; Xavior, M.A. Processing methods and property evaluation of Al2O3 and SiC reinforced metal matrix composites based on aluminium 2xxx alloys. J. Mater. Res. (2016), 31, 1201–1219.
  • 5. Zhang, Q.; Ma, X. Y.; Wu, G. H. (2013). Interfacial microstructure of SiCp/Al composite produced by the pressureless infiltration technique. Ceram Int 39: 4893–4897.
  • 6. Zhang, J. T.; Liu, L. S.; Zhai, P. C. (2008). Effect of fabrication process on the microstructure and dynamic compressive properties of SiCp/Al composites fabricated by spark plasma sintering, Material Letters, 62: 443–446.
  • 7. Reddy, P.S.; Kesavan, R.; Vijaya Ramnath, B. Investigation of mechanical properties of aluminum 6061-silicon carbide, boron carbide metal matrix composite. Silicon (2017), 9, 1– 8.
  • 8. El-Sabbagh, A.; Soliman, M.; Taha, M. (2012). Hot rolling behavior of stir-cast Al 6061 and Al 6082 alloys-SiC fine particulates reinforced composites. J Mater Process Tech 212: 497–508.
  • 9. Taha, M. A.; El-Mahallawy, N. A.; El-Sabbagh, A. M. (2008). Some Experimental Data on Workability of Aluminum-Particulate-Reinforced Metal Matrix Composites, J. Mater. Process. Techno 202 (1–3): 380–385.
  • 10. Zabihi, M.; Toroghinejad, M. R.; Shafyei, A. (2013). Application of powder metallurgy and hot rolling processes for manufacturing aluminum/ alumina composite strips. Mat Sci Eng A-Struct. 560: 567–574.
  • 11. Agus Pramono; Lembit Kommel; Lauri Kollo; Renno Veinthal. (2016). The Aluminum Based Composite Produced by Self-Propagating High Temperature Synthesis, MATERIALS SCIENCE 22(1): 41-43.
  • 12. Pitchayyapillai, G.; Seenikannan, P.; Raja, K.; Chandrasekaran, K. Al6061 hybrid metal matrix composite reinforced with alumina and molybdenum disulphide. Adv. Mater. Sci. Eng. (2016), 2016, 6127624.
  • 13. Ch Hima Gireesh, K. G. Durga Prasad, and Koona Ramji, Experimental Investigation on Mechanical Properties of an Al6061 Hybrid Metal Matrix Composite, J. Compos. Sci. (2018), 2, 49; doi:10.3390/jcs2030049.
  • 14. Chang, C. I.; Lee, C. J.; Huang, J. C. (2004). Relationship between grain size and Zener–Holloman parameter during friction stir processing in AZ31 Mg alloys, Scripta Materialia 51: 509–514.
  • 15. Sellars, C. M. (2011). On physical metallurgy of thermo-mechanical processing of steels and other metals, Proc. Of Int. Conference THERMEC 88, Tokyo, 448-457.
  • 16. Srivatsan, T. S.; Prakash, A. (1995). The quasi-static fracture behavior of an aluminum alloy metal-matrix composite. Composites Science and Technology, 53: 307–315.
  • 17. Dipti Kanta Das; Purna Chandra Mishra; Saranjit Singh; Swati Pattanaik. (20140. Fabrication and heat treatment of ceramic reinforced aluminum matrix composites – A Review, International Journal of Mechanical and Materials Engineering 1:6.
  • 18. Hung, N. P.; Boey, F. Y. C.; Khor, K. A.; Oh, C. A.; Lee, H. F. (1995). Machinability of cast and powder-formed aluminum alloys reinforced with SiC particles. Journal of Materials Processing Technology 48: 291–297.
  • 19. Song, W. Q.; Krauklis, P.; Mouritz, A. P.; Bandyopadhyay, S. (1995). The effect of thermal ageing on the abrasive wear behavior of age hardening 2014 Al/ Sic and 6061 Al/SIC composites. Wear 185: 125–130.
  • 20. Kalkanli, A.; Yilmaz, S. (2008). Synthesis and characterization of aluminum alloy 7075 reinforced with silicon carbide particulates. Materials and Design 29: 775–780.
  • 21. Rao, R. N., Das, S.; Mondal, D.P.; Dixit, G. (2009). Dry sliding wear behavior of cast high strength aluminum alloy (Al–Zn–Mg) and hard particle composites. Wear 267: 1688–1695.
  • 22. Nagaral M, Auradi V, Parashivamurthy KI, Kori SA (2016) A Comparative Study on Wear Behavior of Al 6061-6% SiC and Al6061-6% Graphite Composites. J Appl Mech Eng 5: 227. doi: 10.4172/2168-9873.1000227
  • 23. Nagaral M, Attar S, Reddappa HN, Auradi V, Suresh Kumar et al. (2015) Mechanical behaviour of Al7025-B4C particulate reinforced composites. J. Applied Mechanical Engineering 4: 6
  • 24. Suresh S, Shenbaga VM, Vettivel SC, Selvakumar N (2014) Mechanical behaviour and wear prediction of stir cast Al-TiB2 composites using response surface methodology. Materials and Design 59: 383-396.
  • 25. Umanath K, Palanikumar K, Selvamani ST (2013) Analysis of dry sliding wear behavior of Al6061-SiC-Al2O3 hybrid metal matrix composites. Composites Part-B 53: 159-168.
  • 26. Naveed, M.; Khan, A.R.A. Ultimate Tensile Strength of Heat Treated Hybrid Metal Matrix Composites. Int. J. Sci. Res. (2015), 4, 146–151.
  • 27. Chawla, K. Fibrous Materials, 2nd ed.; Cambridge University Press: Cambridge, UK, (2016).
  • 28. Osama M. Irfan, Fahad A. Al-Mufadi, and F. Djavanroodi, Surface Properties and Erosion–Corrosion Behavior of Nanostructured Pure Titanium in Simulated Body Fluid, Metallurgical And Materials Transactions A, V. 49A, Nov. (2018), 5695 – 5704.
  • 29. Wei, S. H.; Liu, Y. Q.; Nie, J. H.; Zuo, T. Z.; Ma, L.; Fan, J. Z. (2016). Hot Deformation Behavior and Processing Map of 25%SiCp/2009A1 Composite, Materials Science Forum 849: 409-415.
  • 30. Sivakesavam, O. (1994). Effect of Processing History and Initial Microstructure on the Hot Working of Mg, Mg–Zn–Mn, Mg–Li–Al, and Mg–Li–Al–Zr Alloys: Characterization with Processing Maps, Ph.D. Thesis, Indian Institute of Science, Bangalore.
  • 31. Jingli Duan; YuanbiaoTan; LiyuanJi; Wenchang Liun; Jing wu Zhang; Riping Liu. (2015). Hot deformation behavior of 51.1 Zr–40.2 Ti–4.5 Al–4.2 V alloy in the single β phase field, Progress in Natural Science, Materials International 25:34–41.
  • 32. Ganesan, G.; Raghukandan, K.; Karthikeyan, R. (2003). Formability study on Al/SiC composites. Mater Sci Forum, 437(438): 227–230.
  • 33. Zhang, P.; Li, F. G.; Wan, Q. (2010). Constitutive equation and processing map for hot deformation of SiC particles reinforced metal matrix composites. J Mater Eng Performance 19: 1290–1297.
  • 34. Zhang, H.; Lin, G. Y.; Peng, D. S. (2004). Dynamic and static softening behaviors of aluminum alloys during multistage hot deformation. J Mater Process Tech 148: 245–249.
  • 35. Li, H. Z.; Wang, H. J.; Zeng, M. 2011. Forming behavior and workability of 6061/B4Cp composite during hot deformation. Compos Sci Technology 71: 925–930.
  • 36. Yar, A. A.; Montazerian, M.; Abdizadeh, H. (2009). Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO. J Alloys Compd 484: 400–404.
There are 36 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Osama Irfan 0000-0002-9104-1611

Abdualaziz Alaboodi 0000-0003-0370-5324

Publication Date June 1, 2020
Submission Date March 4, 2019
Published in Issue Year 2020 Volume: 23 Issue: 2

Cite

APA Irfan, O., & Alaboodi, A. (2020). On the Compression Properties and Erosion-Corrosion Behaviour of Al 6061/15%Sicp Composite. Politeknik Dergisi, 23(2), 415-425. https://doi.org/10.2339/politeknik.535022
AMA Irfan O, Alaboodi A. On the Compression Properties and Erosion-Corrosion Behaviour of Al 6061/15%Sicp Composite. Politeknik Dergisi. June 2020;23(2):415-425. doi:10.2339/politeknik.535022
Chicago Irfan, Osama, and Abdualaziz Alaboodi. “On the Compression Properties and Erosion-Corrosion Behaviour of Al 6061/15%Sicp Composite”. Politeknik Dergisi 23, no. 2 (June 2020): 415-25. https://doi.org/10.2339/politeknik.535022.
EndNote Irfan O, Alaboodi A (June 1, 2020) On the Compression Properties and Erosion-Corrosion Behaviour of Al 6061/15%Sicp Composite. Politeknik Dergisi 23 2 415–425.
IEEE O. Irfan and A. Alaboodi, “On the Compression Properties and Erosion-Corrosion Behaviour of Al 6061/15%Sicp Composite”, Politeknik Dergisi, vol. 23, no. 2, pp. 415–425, 2020, doi: 10.2339/politeknik.535022.
ISNAD Irfan, Osama - Alaboodi, Abdualaziz. “On the Compression Properties and Erosion-Corrosion Behaviour of Al 6061/15%Sicp Composite”. Politeknik Dergisi 23/2 (June 2020), 415-425. https://doi.org/10.2339/politeknik.535022.
JAMA Irfan O, Alaboodi A. On the Compression Properties and Erosion-Corrosion Behaviour of Al 6061/15%Sicp Composite. Politeknik Dergisi. 2020;23:415–425.
MLA Irfan, Osama and Abdualaziz Alaboodi. “On the Compression Properties and Erosion-Corrosion Behaviour of Al 6061/15%Sicp Composite”. Politeknik Dergisi, vol. 23, no. 2, 2020, pp. 415-2, doi:10.2339/politeknik.535022.
Vancouver Irfan O, Alaboodi A. On the Compression Properties and Erosion-Corrosion Behaviour of Al 6061/15%Sicp Composite. Politeknik Dergisi. 2020;23(2):415-2.