Review
BibTex RIS Cite

Çeliklerin işlenebilirliği: kimyasal bileşim, mikroyapı, mekanik özellikler ve işlenebilirlik ilişkisi

Year 2020, Volume: 23 Issue: 2, 457 - 482, 01.06.2020
https://doi.org/10.2339/politeknik.550000

Abstract

 “İşlenebilirlik” işlenen
malzemenin bir özelliğidir ve ancak malzemenin nitelikleri değiştirilerek
işlenebilirliği değiştirilebilir. Bu durum ise, malzemenin kimyasal ve fiziksel
özelliklerindeki değişimle sağlanır. Derleme niteliğindeki bu çalışma ile
“İşlenebilirlik” kavramını kapsamlı şekilde açıklamak ve çeliklerin
işlenebilirliğini geliştirmek amaçlı yapılan çalışmaları tartışmak
amaçlanmıştır. İşlenebilirlik değerlendirmelerinde, genel olarak çeliklerin mekanik
özellikleri ve esasen sertlikleri dikkate alınır. Sertliği arttıran esas
element olan karbon miktarı ve ısıl işlemlerle oluşturulan mikroyapılarına
bağlı işlenebilirlik değerlendirilir. Bununla birlikte, mekanik özelliklerde
belirgin bir değişiklik oluşturmaksızın işlenebilirliği artıran S, Pb, Bi ve Te
gibi elementlerin ilavesi, talaşlı işlenebilirliği önemli oranda geliştirir.
İşlenebilirlik değerlendirmesi ise, talaş kaldırma sürecinde oluşan kesme
kuvveti, takım ömrü, yüzey kalitesi ve talaş biçimi dikkate alınarak
derecelendirilir. Kimyasal bileşim ve mikroyapının çeliklerin işlenebilirlik
derecelendirmesine etkisi, malzeme ve metalürji bilimi alanında en çok
çalışılan konulardan biridir. Çeliğin üretim sürecindeki değişkenlerinin
yanında, ısıl işlemlerle oluşturulan mikroyapıya bağlı işlenebilirlik
değerlendirmeleri de önemlidir. Belirtilen işlemlerle sağlanan mikroyapıdaki
fazların heterojen dağılımları, işlenebilirlik değerlendirmelerinde göz ardı
edilmemelidir.  

References

  • 1) Dieter G. E., “Mechanical Metallurgy”, SI Metric Edition, McGraw-Hill, London, UK, (1988).
  • 2) Jablonowski J., Eigel-Miller N., “World Machine-Tool Output and Consumption Survey”, Gardner Business Media Inc., Cincinnati, OH, USA, (2013)
  • 3) Kline S., “Tooling Equipment Report”, Gardner Business Media Inc., Cincinnati, OH, USA, (2012).
  • 4) Stahl J. E., “Metal Cutting - Theories and models”, Lund University in cooperation with Seco Tools AB, Lund/Fagersta, Sweden, (2012).
  • 5) Schultheiss, F., “On the Machinability of Ductile and Strain Hardening Materials”, Media-Tryck, Lund University, Lund, Sweden (2013).
  • 6) Özçatalbaş, Y., Ercan, F., “Talaşlı İmalatta İşlenebilirlik ve İşlenebilirliğin Ölçülmesi”, Standard Dergisi, Mayıs, (1996).
  • 7) Smith, T. G., “Advanced Machining The Handbook of Cutting Technology”, IFS Publications Ltd. UK., (1989).
  • 8) Mills, B., Redford, A. H., “Machinability of Engineering Materials”, Applied Science Publications Ltd. UK., (1989).
  • 9) Shaw, M.C., “Metal Cutting Principles”, Oxford University, New York, (1991).
  • 10) Genculu S., “Factors Affecting Machinability of Metals”, http://www.cabinc.com/pdf/MachinabilityFactors-wp.pdf , (2018).
  • 11) Özçatalbaş Y., “The machinabilities of 1050, 4140 and 8620 steels related to changing microstructures and mechanical properties before and after the heat treatment”, Ph.D. Thesis, G.Ü. Institute of Science and Technology, Ankara, (1996).
  • 12) Özçatalbaş Y., “The Effects of Chemical Composition and Microstructure on Machinability of Steels”, 8th International Advanced Technologies Symposium (IATS’17), 19-22 October 1437-1444, Elazığ, Turkey, (2017).
  • 13) Çelik A., “Kurşunlu Otomat Çelikleri’’, Asil Çelik Teknik Yayın 3, (1990).
  • 14) Ramalingam, B., Thomann, K., “The Role of Sulfhide Type and of Refractory Inclusions in The Machinability of Free Cutting Steel’’, Influence of Metallurgy on Machinability, Prod. Int. Conf., ASM, (1975).
  • 15) Vasillko, K., Novak, S., “Results of Research in to the Effect Isothermal Annealing on the Machinability of Steels”, Hutn. Listy. 35, 14, (1980).
  • 16) Araki, T., Fukunaga, H., Sata, T., “Some Results of Cooperative Research on te Effect of Heat Treated Structure on the Machinability of a Low Alloy Steel”, Influence of Metallurgy on Machinability of Materials, (Prod. Conf.), 381, ASM, (1975).
  • 17) Abeyama, S., Kimura, S., “The Influence of Heat Treatment and Cold Forging on Machinability of Low Alloyed Steels”, The Machinability of Engineering Materials, (Prod. Conf.), ASM, (1983).
  • 18) Okusa, K., Kitagawa, R., “Method of Testing Steel Machinability by Fac-Milling End of Cylindrical Workpice”, Conference on Machinability Testing and Utilization of Machining Data (Prod. Conf.), ASM International Materials and Metal Working Sersies, Oak, Brook, IL, (1979).
  • 19) Araki, T., Yamamato, S., “An Evaluation of Machinability of Low Alloy Steel Materials with or Without Heat Treatment”, Machinability Testing and Utilization of Machining Data (Prod. Conf.), ASM, (1979).
  • 20) Ozcatalbas, Y., “Machinability of Elongated Coarse Grain Fe-Based Superalloys”, Machining Science and Technology, 18:4, 626-637, (2014). 21) Capdevilla C., Miller U., Jelenak H., Bhadeshia H.K.D.H., “Strain Heterogeneity and the Production of Coarse Grains in Mechanically Alloyed Iron-Based PM2000 Alloy”. Materials Science and Engineering, A, 316: 161–165, (2001b)
  • 22) Kim, H. Y., Kwon, O. Y., Jang, J., Hong, S.H., “Modification of Anisotropic Mechanical Properties in Recrystallized Oxide Dispersion Strengthened Ferritic Alloy”, Scripta Materialia, 54, 1703–1707, (2006).
  • 23) Williams, J. A., Horne, J.G., “Crystallographic Effects in Metal Cutting”, Journal of Materials Science, 17, 2618–2624, (1982).
  • 24) Lane, J. D., Stam, J. W., “General Inroductor Review of the Relationship Between Metallurgy and Machinability’’, Iron and Steel Inst. (Prod. Confer.) Machinability, pp.65-70, (1967).
  • 25) Trent, E. M., Metal Cutting, Tanner Ltd., London, 2000.
  • 26) Sadık, M. I., Lindström, B., “The Role of Tool-Chip Contact Length in Metal Cutting’’, Journal of Materials Processing Technology, Vol. 37, 613-627, (1993).
  • 27) Babu, S. S., Chakraborty, A. K., Chattopadhay, A. B., “Microscobic Study on Chips Formed by Sharp and Beveled Turning Carbide Inserts’’, Journal of Mater. Proces. Tech., 37, 781-789, (1993).
  • 28) Das A., Mukhopadhyay A., S. Patel K., Biswal, B. B. “Comparative Assessment on Machinability Aspects of AISI 4340 Alloy Steel Using Uncoated Carbide and Coated Cermet Inserts During Hard Turning”, Arab J Sci Eng, 41:4531–4552, (2016).
  • 29) Katayama, S., Hashımura, M., ‘’Effect of Carbon, Phosphorus and Nitrogen Cotents in Steel on Machined Surface and Cutting Force’’, ISU International, Vol. 30. No. 6, Page 457-463, (1990).
  • 30) Özçatalbaş Y., “Düşük Alaşımlı Çelikte Yığıntı Talaş Oluşumunun İşleme Özelliklerine Etkisi”, 8.Uluslararası Makina Tasarım ve İmalat Kongresi, 25-34, 9-11 Eylül, Ankara, (1998).
  • 31) Özçatalbaş, Y., “Çelikteki Karbon, Fosfor ve Azot Miktarının İşlenen Yüzey ve Kesme Kuvvetleri Üzerine Etkisi”, G.Ü.T.E.F. Dergisi, 5, 1-2, 71-82 (1996). 32) Williams J. E., Smart E. F., Milner D. R., “The Metallurgy of Machining- Part 2”, Metalurgia, February, 51-60, (1970).
  • 33) Aouici H., Bouchelaghem H., Yallese M.A., Elbah M., Fnides B., “Machinability investigation in hard turning of AISI D3 cold work steel with ceramic tool using response surface methodology”, Int. J. Adv. Manuf. Technol. 73,1775–1788, (2014).
  • 34) Trent E. M., “The Assessment of Machinability”, Iron and Steel Inst., Machinability, pp.1-9, 1967
  • 35) Nagamachi, M., “Effect of MnS on Machinability’’, Transaction ISU, 25, (1985).
  • 36) Yamaguchi, K., “Friction Reducing Actions of Inclusions in Metal Cutting’’, Journal of Engineering for Industry, 102, Agust (1980).
  • 37) Robat, D., Bellot, J., “Steel With Improved Machinability Under Varried Conditions’’, ASM, International Conference on High Productivity Machining, Materials and Processing (Proc. Conf.), New Orleans, Louisiana, 7-9 May, (1985).
  • 38) Özçatalbaş, Y., “Alaşım Elementlerinin Çeliğin İşlenebilirliğine Etkisi”, Makine Tek, 40, (1998).
  • 39) Koji W., Tatsuya I., Toshiharu A., “Development of Lead-free Free-cutting Steel and Cutting Technology”, Nippon Steel & Sumitomo Metal Tech. Rep. No. 116, September, (2017).
  • 40) Pavel K., Borislav S., Lepa S., Ondrej L., Ildiko M., “The influence of material microstructure on the chip forming process”, Contemporary Materials, 1, 69-76, (2014).
  • 41) Naylor D.J., Llewellyn D.T., “Control of machinability in medium-carbon steels” Keane Journal, Metals Technology, 3, 1, 254-271, (1976).
  • 42) Laizhu J., Kun C., Hannu H., “Effects of the composition, shape factor and area fraction of sulfide inclusions on the machinability of re-sulfurized free-machining steel”, Journal of Materials Processing Technology, 58, 160-165, (1996).
  • 43) Katayama, S., Imal, T., “Effect of Tool Materials on Surface Machined Roughness and Cuting Force of Low-Carbon Resulfurized Free-Machining Steels’’, ISU, International, 30, 4, (1990).
  • 44) Ramalingam, S., Watson, J. D., “Steel Making, Microstructure and Machinability’’, Mecanical Working and Steel Processing XVIII. (Proc. Confer.), Toronto, Iron and Steel Society, (1980).
  • 45) Şeker, U., “Otomatik tezgahlarda çeliğin işlenebilirlik değerlendirmesi”, G.Ü. Teknik Eğitim Fakültesi Dergisi, 1(1), 105-114, (1987).
  • 46) Yamamato, Y., Nishimura, T., “Development of A low Carbon Resulfurized Free Cutting Steel by Continuous Casting Process’’, ASM, International Conference on High Productivity Machining, Materials and Processing (Proc. Conf.), New Orleans, Louisiana, 7-9 May, (1985).
  • 47) Ohtanı, S., Koyasu, Y., Izumı, S., “Properties of Resulphurized Free-Machining Steels Made From Continious Casting Process”, Transactions ISIJ, Vol.23, (1983).
  • 48) Luong, L. H. S., “Influence of Microcracks on Machinability of Metals’’, Metals Technology, November, (1980).
  • 49) Luong, L. H. L., Brown, R.H., “The Role of Microcracks in Large Plastic Deformation’’, Journal of Engineering for Industry, Vol. 103, November (1981).
  • 50) Luiz N. E., Machado A. R., “Development trends and review of free-machining steels”, Proc. IMechE Part B: J. Engineering Manufacture, Vol. 222, (2008).
  • 51) Katayama, S., Imai, T., Suziki, N., “Effect of Cuting Tool-Chip Interface on Built-Up Edge Formation’’, Trasaction ISU, 25, (1985).
  • 52) Hashimura M., Miyanishi K., Mizuno A., “Development of Low-Carbon Lead-Free Free-Cutting Steel Friendly to Environment”, Nippon Steel Technical Report, 96, July, (2007)
  • 53) Ingo E., “Machinability Enhancement of Non-Leaded Free Cutting Steels”, Franhaur Inst., Germany, (Ph.D. Thesis), (2006).
  • 54) Pickett, M. L., Naylor, D. J., “Development and Application of Improved Machinable Engineering Steel’’, ASM, International Conference on High Productivity Machining, Materials and Processing (Proc. Conf.), New Orleans, Louisiana, 7-9 May, (1985).
  • 55) Yaguchi, H., “Effect of Soft Additives (Pb/Bi) on Machinability of Low Carbon Resulphurised Free Machining Steel’’, Materials Science and Technology, 5, March, (1989).
  • 56) Kato, T., Abeyama, S., Kimura, A., “Machinability and Other Properties of Resulfurized Free Machining Steel Containing of Small Amount of Tellurium”, ASM, International Conference on High Productivity Machining, Materials and Processing (Proc. Conf.), New Orleans, Louisiana, 7-9 May, (1985). 57) Haitao L., Weiqing C., “Effect of Total Oxygen Content on the Machinability of Low Carbon Resulfurized Free Cutting Steel”, Steel Research Int., 83, 12, (2012). 58) Uhlmann E., Zanatta, A. M., Mahr F., Gomes,J. O., “Influence of inclusion contents on the micro-machinabilityof three plastic mold steels”, Int J Adv Manuf Technol, 68:2451–2460, (2013).
  • 59) Kankaanpaa, H., Pöntinen, H., “Machinability of Calcium-Treated Steels Using TiN-Coated High Speed Steel Tools”, Materials Science and Technology, 3, 155-158, (1987).
  • 60) Aple, A. C., “The Relationship Between Inclusions and The Machinability of Steel’’, 31st Mechanical Working and Steel Processing Conference proceedings, Chicago, IL, October 22-25, (1989).
  • 61) Ånmark N., Karasev A., Jönsson P. G., “The Influence of Microstructure and Non-Metallic Inclusions on the Machinability of Clean Steels”, Steel Research Int. 1, 88, 1-8, (2017).
  • 62) Ånmark N., Karasev A., Jönsson P.G., “The Effect of Different Non-Metallic Inclusions on the Machinability of Steels”, Materials 8, 751-783, (2015).
  • 63) Balart M. J., Davis C. L., Strangwood M., “Fracture behaviour in medium-carbon Ti–V–N and V–N microalloyed ferritic-pearlitic and bainitic forging steels with enhanced machinability”, Materials Science and Engineering A, 328, 48–57, (2002).
  • 64) Pöntinen, H., Paju, M., “Effect of Layer Formation on The Machinability of Steels”, Factors Influence Machining and Their Controls (Proc. Conf.), Cincinati, Ohio, USA, 12-14 Sept., 61-67, (1989).
  • 65) Joseph, A.R., Tipnis, V.A., “The Influence of Non-Metalic Inclusions on The Machinability of Free-Machining Steels”, Influence of Metallurgy on Machinability of Materials (Prod. Conf.), ASM, 1985.
  • 66) Tanaka R., Yamane Y., Sekiya K., Narutaki N., Shiraga T., “Machinability of BN free-machining steel in turning, International Journal of Machine Tools & Manufacture, 47, 1971–1977, (2007).
  • 67) Wang Y.N., Bao Y.P., Wang M., Zhang L.C., “Precipitation and control of BN inclusions in 42CrMo steel and their effect on machinability”, Int. J. Minerals Metall. And Mater., 20/ 9, 842-849, (2013). 68) Ya-nana C., Yan-pinga B., Minb W., Xiao-fenga C., Lin-jinga W., Li-huaa Z., “Basic research on mechanism of BN inclusion in improving the machinability of steel”, Revista de Metalurgia, 50(4) October–December, e028, (2014).
  • 69) Yu-Nan W.,, Jian Y., Yan-Ping B., “Effects of Non-metallic Inclusions on Machinability of Free-Cutting Steels Investigated by Nano-Indentation Measurements”, Metallurgical and Materials Trans. A, 46A, Jan. 281, (2015).
  • 70) Katayama, S., Toda M., “Machinability of medium carbon graphitic steel”, Journal of Materials Processing Technology, 62, 358-362, (1996).
  • 71) Gaitonde, V. N., Karnik, S. R., Figueira, L. Davim, J. P., “Machinability investigations in hard turning of AISI D2 cold work tool steel withconventional and wiper ceramic inserts”, Int. J. Refractory Metals Hard Mater. 27, 754–763, (2009).
  • 72) Özçatalbaş Y., “1050 Çeliğinde Mikroyapı ve Mekanik Özelliklerin Talaş Morfolojisi İle İşleme Özelliklerine Etkisi”, 9.Uluslararası Metalurji ve Malzeme Kongresi, 11-15Haziran, İst., (1997).
  • 73) Özçatalbaş Y., “Isıl İşlemlerin Cr-Mo Esaslı Bir Çeliğin İşlenebilirliğine Etkisi”, 10. Uluslararası Metalurji ve Malzeme Kongresi, 759-766, 24-28 Mayıs, İstanbul, (2000).
  • 74) Lane J. D., Stam J. W., “General Introductor Review of The Relationship Between Metallurgy and Machinability”, Iron and Steel Inst., (Prod. Confer.) Machinability, 65-70, (1997). 75) Metals Handbook, “Machining of Carbon and Alloy Steel”, Metals Handbook -Machining, Ninth Edition, Vol.16, ASM, (1989). 76) Bellot J., “Steels With Ipmrowed Machinability”, Translated From Metallovedenie Termicheskaya Obrabotka Metallov, 11, 14-18, Nov. (1980).
  • 77) Naylor D. J., Llewellyn D. T., Keane D. M., “Control of Machinability in Medium Carbon Steels”, Metals Technology, 3(1), 254-271, (1976). 78) Özçatalbaş Y., Ercan F., “The Effects of Heat Treatment on The Machinability of Mild Steels”, Journal of Materials Processing Technology, 136/1-3, 227-238, (2003).
  • 79) Björkeborn K., Klement U., Oskarson H.B., “Study of microstructural influences on machinability of case hardening steel”, Int J Adv Manuf Technol 49, 441–446, (2010).
  • 80) Mabrouki T., Courbon C., Fabre D., Arrieta I., Arrazola P.J., Rech J., “Influence of Microstructure on Chip Formation when Broaching Ferritic-Pearlitic Steels”, Procedia CIRP, 58, 43 – 48, (2017).
  • 81) Abouridouanea M., Klockea F., Döbbeler B., “Characterisation and modelling of the machinability of ferritic-pearlitic steels in drilling operations”, Procedia CIRP, 58, 79 – 84, (2017).
  • 82) Diniz, A. E., Machado, A. R., Corrê J. G., “Tool wear mechanisms in the machining of steels and stainless steel”, The International Journal of Advanced Manufacturing Technology, 87, 9–12, pp 3157–3168, (2016).
  • 83) Stachowiak G. W. and Stachowiak, G. B. "Wear Behaviour of Ceramic Cutting-Tools", Key Engineering Materials, Vol. 96, pp. 137-164, (1994).
  • 84) Rahman, M. “Advanced ceramic tools for machining application-HI”, Machining Science and Technology, 3:2, 295-296, (1999).
  • 85) Komanduri, R. “Advanced ceramic tool materials for machining”, Sadhan Vol. 13, 1-2, pp. 119-137, (1988).
  • 86) Fernandes, C. M., Senos. A. M. R., “Cemented carbide phase diagrams: A review”, Int. Journal of Refractory Metals and Hard Materials, 29 405–418, (2011).
  • 87) Acchar, W., Zollfrank, C., Greil,P., “Microstructure and Mechanical Properties of WC-Co reinforced With NbC”, Materials Research, Vol.7 No.3, 445-450, (2004).
  • 88) Chang, S. H., Chang, M. H., Huang, K. T., “Study on the sintered characteristics and properties of nanostructured WC-15 wt% (Fe-Ni-Co) and WC-15 wt% Co hard metal alloys”, Journal of Alloys and Compounds, 649, 89-95, (2015).
  • 89) Konyashin, I., Zaitsev, A.A., Sidorenko, D., Levashov, E. A., “Wettability of tungsten carbide by liquid binders in WC–Co cemented carbides: Is it complete for all carbon contents?”, Int. Journal of Refractory Metals and Hard Materials (Article in Press), (2016).
  • 90) What is tungsten carbide?, https://www.quora.com/What-is-tungsten-carbide, (2017).
  • 91) Xin, W., “WC/Co Tool Wear in Dry Turning of Commercially Pure Aluminium”, Journal of Manufacturing Science and Engineering, Vol. 136 / 031006/1-7, (2014).
  • 92) Xin Liu, L. L., Li, X. Q., Li, Y. Y., “Wear mechanisms of WC–10Ni3Al carbide tool in dry turning of Ti6Al4V”, Int. Journal of Refractory Metals and Hard Materials, 48, 272–285, (2015).
  • 93) Bai, D., Sun, J., Chen, W., “Wear mechanisms of WC/Co tools when machining high-strength titanium alloy TB6 (Ti-10V-2Fe-3Al)”, Int J Adv Manuf Technol, 90:2863–2874, (2017).
  • 94) Liang L., Liu X., Li X. Q., Li Y. Y., “Wear mechanisms ofWC–10Ni3Al carbide tool in dry turning of Ti6Al4V”, Int. Journal of Refractory Metals and Hard Materials, 48, 272–285, (2015).
  • 95) Özçatalbaş Y., “Wear mechanisms of WC–Co tool in dry machining of heat treated steels”, 8th International Advanced Technologies Symposium (IATS’17),1854-1861, 19 - 22 Oct Elazığ/TÜRKİYE, (2017).
  • 96) Tonshoff H. K., “Machinability of Forged Steels in Inturrupted Cutting”, Journal of Materials Processing Technology, 21, 219-236, (1990).
  • 97) Tonshoff H. K., “Materials Aspects in Machining of Forged Steels”, High Productivity Machining (Proc. Conf.), 207-221, (1985).
  • 98) Finn M. E., “Machining of Carbon and Alloy Steel”, Metals Handbook, Ninth Edition, 16, 672-673, ASM Int., Ohio, (1989).
  • 99) Das S. R., Dhupal D., Kumar A., “Experimental investigation into machinability of hardened AISI 4140 steel using TiN coated ceramic tool”, Measurement, 62, 108–126, (2015).
  • 100) Bhattacharya D., Machinability of Steel, Journal of Metals, March, 32-35, (1987).
  • 101) Tan E., Ovalı I., Mavi A., Kaplan M., Okay S., “Influence of repeated tempering on the machinability and microstructure of an AISI 52100 steel”, Materials Testing, Volume: 57 Issue: 11-12, 947-953, (2015).
  • 102) Sueyosh H., Tanaka R., “Heat Treatment and Machinability of the Tri-Phase Steel Composed of Ferrite, Martensiteand Graphite”, J. Japan Inst. Metals,Vo1.54 , 2, pp231-236, (1990).
  • 103) Akasawa T., Fukuda I., Nakamura K., Tanaka T., “Effect of microstructure and hardness on the machinability of medium-carbon chrome-molybdenum steel”, Journal of Materials Processing Technology, 153–154, 48–53, (2004).
  • 104) Silva L. R., Abrão A. M., Faria P., Davim J. P., “Machinability Study of Steels in Precision Orthogonal Cutting”, Materials Research., 15(4): 589-595, (2012).
  • 105) Arrieta, I., Courbon, C., Cabanettes, F. P.-J. Arrazola, and J. Rech, “Influence of the ferritic-pearlitic steel microstructure on surface roughness in broaching of automotive steels” AIP Conference Proceedings, 1896, 090011, (2017).
  • 106) Yazman Ş., Akdemir A., Uyaner M., Bakırcıoğlu B., “The Effect of Build Up Edge Formation on The Machining Characteristics in Austempered Ferritic Ductile Iron”, Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition, IMECE2013, 15-21, California, USA, (2013).
  • 107) Akdemir, A., Yazman Ş., Saglam H., Uyaner M., “The Effects of Cutting Speed and Depth of Cut on Machinability Characteristics of Austempered Ductile Iron”, Journal of Manufacturing Science and Engineering, April Vol. 134 / 021013-1, (2012).
  • 108) Korkut, İ., Kasap, M., Çiftçi, İ., and Şeker U., “Determination of Optimum Cutting Parameters During Machinig of AISI 304 Austenitic Stainless Steel”, Materials Design, 25, 303-305, (2004).
  • 109) Yıldız, Y., Günay, M., Şeker, U., “The effect of the cutting fluid on surface roughness in boring of low carbon steel”, Machining Science and Technology, 11(4), 487-494, (2007).

Machinability of steels: the relationship between machinability and chemical composition, microstructure and also mechanical properties

Year 2020, Volume: 23 Issue: 2, 457 - 482, 01.06.2020
https://doi.org/10.2339/politeknik.550000

Abstract

Machinability is a feature of the material being
processed and can only be changed by changing the properties of the material.
This is achieved by changes in the chemical and physical properties of the
material. The aim of this compilation study is to explain the machinability
concept extensively and to discuss the works done to improve the machinability
of the steels. When evaluating the machinability of steels, their mechanical
properties and especially their hardness are taken into consideration. The
machinability depending on the microstructures formed by heat treatments and
the amount of carbon which is the main element that increases the hardness are
evaluated. However, the addition of S, Pb, Bi and Te etc. elements increase the
machinability without significant changes in the mechanical properties of
steel.  The machinability is graded by
taking into consideration of the cutting force, tool life, surface quality and
chip shape generated during the machining process. The effect of chemical composition
and microstructure on machinability of steels is one of the most investigated
subjects in the field of materials and metallurgical science. In addition to
the variables in the production process of steel, microstructure-based
machinability assessments generated by heat treatments are also important. The
heterogeneous distribution of the phases in the microstructure provided by the
mentioned processes should not be ignored in the machinability assessments.

References

  • 1) Dieter G. E., “Mechanical Metallurgy”, SI Metric Edition, McGraw-Hill, London, UK, (1988).
  • 2) Jablonowski J., Eigel-Miller N., “World Machine-Tool Output and Consumption Survey”, Gardner Business Media Inc., Cincinnati, OH, USA, (2013)
  • 3) Kline S., “Tooling Equipment Report”, Gardner Business Media Inc., Cincinnati, OH, USA, (2012).
  • 4) Stahl J. E., “Metal Cutting - Theories and models”, Lund University in cooperation with Seco Tools AB, Lund/Fagersta, Sweden, (2012).
  • 5) Schultheiss, F., “On the Machinability of Ductile and Strain Hardening Materials”, Media-Tryck, Lund University, Lund, Sweden (2013).
  • 6) Özçatalbaş, Y., Ercan, F., “Talaşlı İmalatta İşlenebilirlik ve İşlenebilirliğin Ölçülmesi”, Standard Dergisi, Mayıs, (1996).
  • 7) Smith, T. G., “Advanced Machining The Handbook of Cutting Technology”, IFS Publications Ltd. UK., (1989).
  • 8) Mills, B., Redford, A. H., “Machinability of Engineering Materials”, Applied Science Publications Ltd. UK., (1989).
  • 9) Shaw, M.C., “Metal Cutting Principles”, Oxford University, New York, (1991).
  • 10) Genculu S., “Factors Affecting Machinability of Metals”, http://www.cabinc.com/pdf/MachinabilityFactors-wp.pdf , (2018).
  • 11) Özçatalbaş Y., “The machinabilities of 1050, 4140 and 8620 steels related to changing microstructures and mechanical properties before and after the heat treatment”, Ph.D. Thesis, G.Ü. Institute of Science and Technology, Ankara, (1996).
  • 12) Özçatalbaş Y., “The Effects of Chemical Composition and Microstructure on Machinability of Steels”, 8th International Advanced Technologies Symposium (IATS’17), 19-22 October 1437-1444, Elazığ, Turkey, (2017).
  • 13) Çelik A., “Kurşunlu Otomat Çelikleri’’, Asil Çelik Teknik Yayın 3, (1990).
  • 14) Ramalingam, B., Thomann, K., “The Role of Sulfhide Type and of Refractory Inclusions in The Machinability of Free Cutting Steel’’, Influence of Metallurgy on Machinability, Prod. Int. Conf., ASM, (1975).
  • 15) Vasillko, K., Novak, S., “Results of Research in to the Effect Isothermal Annealing on the Machinability of Steels”, Hutn. Listy. 35, 14, (1980).
  • 16) Araki, T., Fukunaga, H., Sata, T., “Some Results of Cooperative Research on te Effect of Heat Treated Structure on the Machinability of a Low Alloy Steel”, Influence of Metallurgy on Machinability of Materials, (Prod. Conf.), 381, ASM, (1975).
  • 17) Abeyama, S., Kimura, S., “The Influence of Heat Treatment and Cold Forging on Machinability of Low Alloyed Steels”, The Machinability of Engineering Materials, (Prod. Conf.), ASM, (1983).
  • 18) Okusa, K., Kitagawa, R., “Method of Testing Steel Machinability by Fac-Milling End of Cylindrical Workpice”, Conference on Machinability Testing and Utilization of Machining Data (Prod. Conf.), ASM International Materials and Metal Working Sersies, Oak, Brook, IL, (1979).
  • 19) Araki, T., Yamamato, S., “An Evaluation of Machinability of Low Alloy Steel Materials with or Without Heat Treatment”, Machinability Testing and Utilization of Machining Data (Prod. Conf.), ASM, (1979).
  • 20) Ozcatalbas, Y., “Machinability of Elongated Coarse Grain Fe-Based Superalloys”, Machining Science and Technology, 18:4, 626-637, (2014). 21) Capdevilla C., Miller U., Jelenak H., Bhadeshia H.K.D.H., “Strain Heterogeneity and the Production of Coarse Grains in Mechanically Alloyed Iron-Based PM2000 Alloy”. Materials Science and Engineering, A, 316: 161–165, (2001b)
  • 22) Kim, H. Y., Kwon, O. Y., Jang, J., Hong, S.H., “Modification of Anisotropic Mechanical Properties in Recrystallized Oxide Dispersion Strengthened Ferritic Alloy”, Scripta Materialia, 54, 1703–1707, (2006).
  • 23) Williams, J. A., Horne, J.G., “Crystallographic Effects in Metal Cutting”, Journal of Materials Science, 17, 2618–2624, (1982).
  • 24) Lane, J. D., Stam, J. W., “General Inroductor Review of the Relationship Between Metallurgy and Machinability’’, Iron and Steel Inst. (Prod. Confer.) Machinability, pp.65-70, (1967).
  • 25) Trent, E. M., Metal Cutting, Tanner Ltd., London, 2000.
  • 26) Sadık, M. I., Lindström, B., “The Role of Tool-Chip Contact Length in Metal Cutting’’, Journal of Materials Processing Technology, Vol. 37, 613-627, (1993).
  • 27) Babu, S. S., Chakraborty, A. K., Chattopadhay, A. B., “Microscobic Study on Chips Formed by Sharp and Beveled Turning Carbide Inserts’’, Journal of Mater. Proces. Tech., 37, 781-789, (1993).
  • 28) Das A., Mukhopadhyay A., S. Patel K., Biswal, B. B. “Comparative Assessment on Machinability Aspects of AISI 4340 Alloy Steel Using Uncoated Carbide and Coated Cermet Inserts During Hard Turning”, Arab J Sci Eng, 41:4531–4552, (2016).
  • 29) Katayama, S., Hashımura, M., ‘’Effect of Carbon, Phosphorus and Nitrogen Cotents in Steel on Machined Surface and Cutting Force’’, ISU International, Vol. 30. No. 6, Page 457-463, (1990).
  • 30) Özçatalbaş Y., “Düşük Alaşımlı Çelikte Yığıntı Talaş Oluşumunun İşleme Özelliklerine Etkisi”, 8.Uluslararası Makina Tasarım ve İmalat Kongresi, 25-34, 9-11 Eylül, Ankara, (1998).
  • 31) Özçatalbaş, Y., “Çelikteki Karbon, Fosfor ve Azot Miktarının İşlenen Yüzey ve Kesme Kuvvetleri Üzerine Etkisi”, G.Ü.T.E.F. Dergisi, 5, 1-2, 71-82 (1996). 32) Williams J. E., Smart E. F., Milner D. R., “The Metallurgy of Machining- Part 2”, Metalurgia, February, 51-60, (1970).
  • 33) Aouici H., Bouchelaghem H., Yallese M.A., Elbah M., Fnides B., “Machinability investigation in hard turning of AISI D3 cold work steel with ceramic tool using response surface methodology”, Int. J. Adv. Manuf. Technol. 73,1775–1788, (2014).
  • 34) Trent E. M., “The Assessment of Machinability”, Iron and Steel Inst., Machinability, pp.1-9, 1967
  • 35) Nagamachi, M., “Effect of MnS on Machinability’’, Transaction ISU, 25, (1985).
  • 36) Yamaguchi, K., “Friction Reducing Actions of Inclusions in Metal Cutting’’, Journal of Engineering for Industry, 102, Agust (1980).
  • 37) Robat, D., Bellot, J., “Steel With Improved Machinability Under Varried Conditions’’, ASM, International Conference on High Productivity Machining, Materials and Processing (Proc. Conf.), New Orleans, Louisiana, 7-9 May, (1985).
  • 38) Özçatalbaş, Y., “Alaşım Elementlerinin Çeliğin İşlenebilirliğine Etkisi”, Makine Tek, 40, (1998).
  • 39) Koji W., Tatsuya I., Toshiharu A., “Development of Lead-free Free-cutting Steel and Cutting Technology”, Nippon Steel & Sumitomo Metal Tech. Rep. No. 116, September, (2017).
  • 40) Pavel K., Borislav S., Lepa S., Ondrej L., Ildiko M., “The influence of material microstructure on the chip forming process”, Contemporary Materials, 1, 69-76, (2014).
  • 41) Naylor D.J., Llewellyn D.T., “Control of machinability in medium-carbon steels” Keane Journal, Metals Technology, 3, 1, 254-271, (1976).
  • 42) Laizhu J., Kun C., Hannu H., “Effects of the composition, shape factor and area fraction of sulfide inclusions on the machinability of re-sulfurized free-machining steel”, Journal of Materials Processing Technology, 58, 160-165, (1996).
  • 43) Katayama, S., Imal, T., “Effect of Tool Materials on Surface Machined Roughness and Cuting Force of Low-Carbon Resulfurized Free-Machining Steels’’, ISU, International, 30, 4, (1990).
  • 44) Ramalingam, S., Watson, J. D., “Steel Making, Microstructure and Machinability’’, Mecanical Working and Steel Processing XVIII. (Proc. Confer.), Toronto, Iron and Steel Society, (1980).
  • 45) Şeker, U., “Otomatik tezgahlarda çeliğin işlenebilirlik değerlendirmesi”, G.Ü. Teknik Eğitim Fakültesi Dergisi, 1(1), 105-114, (1987).
  • 46) Yamamato, Y., Nishimura, T., “Development of A low Carbon Resulfurized Free Cutting Steel by Continuous Casting Process’’, ASM, International Conference on High Productivity Machining, Materials and Processing (Proc. Conf.), New Orleans, Louisiana, 7-9 May, (1985).
  • 47) Ohtanı, S., Koyasu, Y., Izumı, S., “Properties of Resulphurized Free-Machining Steels Made From Continious Casting Process”, Transactions ISIJ, Vol.23, (1983).
  • 48) Luong, L. H. S., “Influence of Microcracks on Machinability of Metals’’, Metals Technology, November, (1980).
  • 49) Luong, L. H. L., Brown, R.H., “The Role of Microcracks in Large Plastic Deformation’’, Journal of Engineering for Industry, Vol. 103, November (1981).
  • 50) Luiz N. E., Machado A. R., “Development trends and review of free-machining steels”, Proc. IMechE Part B: J. Engineering Manufacture, Vol. 222, (2008).
  • 51) Katayama, S., Imai, T., Suziki, N., “Effect of Cuting Tool-Chip Interface on Built-Up Edge Formation’’, Trasaction ISU, 25, (1985).
  • 52) Hashimura M., Miyanishi K., Mizuno A., “Development of Low-Carbon Lead-Free Free-Cutting Steel Friendly to Environment”, Nippon Steel Technical Report, 96, July, (2007)
  • 53) Ingo E., “Machinability Enhancement of Non-Leaded Free Cutting Steels”, Franhaur Inst., Germany, (Ph.D. Thesis), (2006).
  • 54) Pickett, M. L., Naylor, D. J., “Development and Application of Improved Machinable Engineering Steel’’, ASM, International Conference on High Productivity Machining, Materials and Processing (Proc. Conf.), New Orleans, Louisiana, 7-9 May, (1985).
  • 55) Yaguchi, H., “Effect of Soft Additives (Pb/Bi) on Machinability of Low Carbon Resulphurised Free Machining Steel’’, Materials Science and Technology, 5, March, (1989).
  • 56) Kato, T., Abeyama, S., Kimura, A., “Machinability and Other Properties of Resulfurized Free Machining Steel Containing of Small Amount of Tellurium”, ASM, International Conference on High Productivity Machining, Materials and Processing (Proc. Conf.), New Orleans, Louisiana, 7-9 May, (1985). 57) Haitao L., Weiqing C., “Effect of Total Oxygen Content on the Machinability of Low Carbon Resulfurized Free Cutting Steel”, Steel Research Int., 83, 12, (2012). 58) Uhlmann E., Zanatta, A. M., Mahr F., Gomes,J. O., “Influence of inclusion contents on the micro-machinabilityof three plastic mold steels”, Int J Adv Manuf Technol, 68:2451–2460, (2013).
  • 59) Kankaanpaa, H., Pöntinen, H., “Machinability of Calcium-Treated Steels Using TiN-Coated High Speed Steel Tools”, Materials Science and Technology, 3, 155-158, (1987).
  • 60) Aple, A. C., “The Relationship Between Inclusions and The Machinability of Steel’’, 31st Mechanical Working and Steel Processing Conference proceedings, Chicago, IL, October 22-25, (1989).
  • 61) Ånmark N., Karasev A., Jönsson P. G., “The Influence of Microstructure and Non-Metallic Inclusions on the Machinability of Clean Steels”, Steel Research Int. 1, 88, 1-8, (2017).
  • 62) Ånmark N., Karasev A., Jönsson P.G., “The Effect of Different Non-Metallic Inclusions on the Machinability of Steels”, Materials 8, 751-783, (2015).
  • 63) Balart M. J., Davis C. L., Strangwood M., “Fracture behaviour in medium-carbon Ti–V–N and V–N microalloyed ferritic-pearlitic and bainitic forging steels with enhanced machinability”, Materials Science and Engineering A, 328, 48–57, (2002).
  • 64) Pöntinen, H., Paju, M., “Effect of Layer Formation on The Machinability of Steels”, Factors Influence Machining and Their Controls (Proc. Conf.), Cincinati, Ohio, USA, 12-14 Sept., 61-67, (1989).
  • 65) Joseph, A.R., Tipnis, V.A., “The Influence of Non-Metalic Inclusions on The Machinability of Free-Machining Steels”, Influence of Metallurgy on Machinability of Materials (Prod. Conf.), ASM, 1985.
  • 66) Tanaka R., Yamane Y., Sekiya K., Narutaki N., Shiraga T., “Machinability of BN free-machining steel in turning, International Journal of Machine Tools & Manufacture, 47, 1971–1977, (2007).
  • 67) Wang Y.N., Bao Y.P., Wang M., Zhang L.C., “Precipitation and control of BN inclusions in 42CrMo steel and their effect on machinability”, Int. J. Minerals Metall. And Mater., 20/ 9, 842-849, (2013). 68) Ya-nana C., Yan-pinga B., Minb W., Xiao-fenga C., Lin-jinga W., Li-huaa Z., “Basic research on mechanism of BN inclusion in improving the machinability of steel”, Revista de Metalurgia, 50(4) October–December, e028, (2014).
  • 69) Yu-Nan W.,, Jian Y., Yan-Ping B., “Effects of Non-metallic Inclusions on Machinability of Free-Cutting Steels Investigated by Nano-Indentation Measurements”, Metallurgical and Materials Trans. A, 46A, Jan. 281, (2015).
  • 70) Katayama, S., Toda M., “Machinability of medium carbon graphitic steel”, Journal of Materials Processing Technology, 62, 358-362, (1996).
  • 71) Gaitonde, V. N., Karnik, S. R., Figueira, L. Davim, J. P., “Machinability investigations in hard turning of AISI D2 cold work tool steel withconventional and wiper ceramic inserts”, Int. J. Refractory Metals Hard Mater. 27, 754–763, (2009).
  • 72) Özçatalbaş Y., “1050 Çeliğinde Mikroyapı ve Mekanik Özelliklerin Talaş Morfolojisi İle İşleme Özelliklerine Etkisi”, 9.Uluslararası Metalurji ve Malzeme Kongresi, 11-15Haziran, İst., (1997).
  • 73) Özçatalbaş Y., “Isıl İşlemlerin Cr-Mo Esaslı Bir Çeliğin İşlenebilirliğine Etkisi”, 10. Uluslararası Metalurji ve Malzeme Kongresi, 759-766, 24-28 Mayıs, İstanbul, (2000).
  • 74) Lane J. D., Stam J. W., “General Introductor Review of The Relationship Between Metallurgy and Machinability”, Iron and Steel Inst., (Prod. Confer.) Machinability, 65-70, (1997). 75) Metals Handbook, “Machining of Carbon and Alloy Steel”, Metals Handbook -Machining, Ninth Edition, Vol.16, ASM, (1989). 76) Bellot J., “Steels With Ipmrowed Machinability”, Translated From Metallovedenie Termicheskaya Obrabotka Metallov, 11, 14-18, Nov. (1980).
  • 77) Naylor D. J., Llewellyn D. T., Keane D. M., “Control of Machinability in Medium Carbon Steels”, Metals Technology, 3(1), 254-271, (1976). 78) Özçatalbaş Y., Ercan F., “The Effects of Heat Treatment on The Machinability of Mild Steels”, Journal of Materials Processing Technology, 136/1-3, 227-238, (2003).
  • 79) Björkeborn K., Klement U., Oskarson H.B., “Study of microstructural influences on machinability of case hardening steel”, Int J Adv Manuf Technol 49, 441–446, (2010).
  • 80) Mabrouki T., Courbon C., Fabre D., Arrieta I., Arrazola P.J., Rech J., “Influence of Microstructure on Chip Formation when Broaching Ferritic-Pearlitic Steels”, Procedia CIRP, 58, 43 – 48, (2017).
  • 81) Abouridouanea M., Klockea F., Döbbeler B., “Characterisation and modelling of the machinability of ferritic-pearlitic steels in drilling operations”, Procedia CIRP, 58, 79 – 84, (2017).
  • 82) Diniz, A. E., Machado, A. R., Corrê J. G., “Tool wear mechanisms in the machining of steels and stainless steel”, The International Journal of Advanced Manufacturing Technology, 87, 9–12, pp 3157–3168, (2016).
  • 83) Stachowiak G. W. and Stachowiak, G. B. "Wear Behaviour of Ceramic Cutting-Tools", Key Engineering Materials, Vol. 96, pp. 137-164, (1994).
  • 84) Rahman, M. “Advanced ceramic tools for machining application-HI”, Machining Science and Technology, 3:2, 295-296, (1999).
  • 85) Komanduri, R. “Advanced ceramic tool materials for machining”, Sadhan Vol. 13, 1-2, pp. 119-137, (1988).
  • 86) Fernandes, C. M., Senos. A. M. R., “Cemented carbide phase diagrams: A review”, Int. Journal of Refractory Metals and Hard Materials, 29 405–418, (2011).
  • 87) Acchar, W., Zollfrank, C., Greil,P., “Microstructure and Mechanical Properties of WC-Co reinforced With NbC”, Materials Research, Vol.7 No.3, 445-450, (2004).
  • 88) Chang, S. H., Chang, M. H., Huang, K. T., “Study on the sintered characteristics and properties of nanostructured WC-15 wt% (Fe-Ni-Co) and WC-15 wt% Co hard metal alloys”, Journal of Alloys and Compounds, 649, 89-95, (2015).
  • 89) Konyashin, I., Zaitsev, A.A., Sidorenko, D., Levashov, E. A., “Wettability of tungsten carbide by liquid binders in WC–Co cemented carbides: Is it complete for all carbon contents?”, Int. Journal of Refractory Metals and Hard Materials (Article in Press), (2016).
  • 90) What is tungsten carbide?, https://www.quora.com/What-is-tungsten-carbide, (2017).
  • 91) Xin, W., “WC/Co Tool Wear in Dry Turning of Commercially Pure Aluminium”, Journal of Manufacturing Science and Engineering, Vol. 136 / 031006/1-7, (2014).
  • 92) Xin Liu, L. L., Li, X. Q., Li, Y. Y., “Wear mechanisms of WC–10Ni3Al carbide tool in dry turning of Ti6Al4V”, Int. Journal of Refractory Metals and Hard Materials, 48, 272–285, (2015).
  • 93) Bai, D., Sun, J., Chen, W., “Wear mechanisms of WC/Co tools when machining high-strength titanium alloy TB6 (Ti-10V-2Fe-3Al)”, Int J Adv Manuf Technol, 90:2863–2874, (2017).
  • 94) Liang L., Liu X., Li X. Q., Li Y. Y., “Wear mechanisms ofWC–10Ni3Al carbide tool in dry turning of Ti6Al4V”, Int. Journal of Refractory Metals and Hard Materials, 48, 272–285, (2015).
  • 95) Özçatalbaş Y., “Wear mechanisms of WC–Co tool in dry machining of heat treated steels”, 8th International Advanced Technologies Symposium (IATS’17),1854-1861, 19 - 22 Oct Elazığ/TÜRKİYE, (2017).
  • 96) Tonshoff H. K., “Machinability of Forged Steels in Inturrupted Cutting”, Journal of Materials Processing Technology, 21, 219-236, (1990).
  • 97) Tonshoff H. K., “Materials Aspects in Machining of Forged Steels”, High Productivity Machining (Proc. Conf.), 207-221, (1985).
  • 98) Finn M. E., “Machining of Carbon and Alloy Steel”, Metals Handbook, Ninth Edition, 16, 672-673, ASM Int., Ohio, (1989).
  • 99) Das S. R., Dhupal D., Kumar A., “Experimental investigation into machinability of hardened AISI 4140 steel using TiN coated ceramic tool”, Measurement, 62, 108–126, (2015).
  • 100) Bhattacharya D., Machinability of Steel, Journal of Metals, March, 32-35, (1987).
  • 101) Tan E., Ovalı I., Mavi A., Kaplan M., Okay S., “Influence of repeated tempering on the machinability and microstructure of an AISI 52100 steel”, Materials Testing, Volume: 57 Issue: 11-12, 947-953, (2015).
  • 102) Sueyosh H., Tanaka R., “Heat Treatment and Machinability of the Tri-Phase Steel Composed of Ferrite, Martensiteand Graphite”, J. Japan Inst. Metals,Vo1.54 , 2, pp231-236, (1990).
  • 103) Akasawa T., Fukuda I., Nakamura K., Tanaka T., “Effect of microstructure and hardness on the machinability of medium-carbon chrome-molybdenum steel”, Journal of Materials Processing Technology, 153–154, 48–53, (2004).
  • 104) Silva L. R., Abrão A. M., Faria P., Davim J. P., “Machinability Study of Steels in Precision Orthogonal Cutting”, Materials Research., 15(4): 589-595, (2012).
  • 105) Arrieta, I., Courbon, C., Cabanettes, F. P.-J. Arrazola, and J. Rech, “Influence of the ferritic-pearlitic steel microstructure on surface roughness in broaching of automotive steels” AIP Conference Proceedings, 1896, 090011, (2017).
  • 106) Yazman Ş., Akdemir A., Uyaner M., Bakırcıoğlu B., “The Effect of Build Up Edge Formation on The Machining Characteristics in Austempered Ferritic Ductile Iron”, Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition, IMECE2013, 15-21, California, USA, (2013).
  • 107) Akdemir, A., Yazman Ş., Saglam H., Uyaner M., “The Effects of Cutting Speed and Depth of Cut on Machinability Characteristics of Austempered Ductile Iron”, Journal of Manufacturing Science and Engineering, April Vol. 134 / 021013-1, (2012).
  • 108) Korkut, İ., Kasap, M., Çiftçi, İ., and Şeker U., “Determination of Optimum Cutting Parameters During Machinig of AISI 304 Austenitic Stainless Steel”, Materials Design, 25, 303-305, (2004).
  • 109) Yıldız, Y., Günay, M., Şeker, U., “The effect of the cutting fluid on surface roughness in boring of low carbon steel”, Machining Science and Technology, 11(4), 487-494, (2007).
There are 101 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Review Article
Authors

Yusuf Özçatalbaş 0000-0002-4256-8492

Publication Date June 1, 2020
Submission Date April 5, 2019
Published in Issue Year 2020 Volume: 23 Issue: 2

Cite

APA Özçatalbaş, Y. (2020). Çeliklerin işlenebilirliği: kimyasal bileşim, mikroyapı, mekanik özellikler ve işlenebilirlik ilişkisi. Politeknik Dergisi, 23(2), 457-482. https://doi.org/10.2339/politeknik.550000
AMA Özçatalbaş Y. Çeliklerin işlenebilirliği: kimyasal bileşim, mikroyapı, mekanik özellikler ve işlenebilirlik ilişkisi. Politeknik Dergisi. June 2020;23(2):457-482. doi:10.2339/politeknik.550000
Chicago Özçatalbaş, Yusuf. “Çeliklerin işlenebilirliği: Kimyasal bileşim, mikroyapı, Mekanik özellikler Ve işlenebilirlik ilişkisi”. Politeknik Dergisi 23, no. 2 (June 2020): 457-82. https://doi.org/10.2339/politeknik.550000.
EndNote Özçatalbaş Y (June 1, 2020) Çeliklerin işlenebilirliği: kimyasal bileşim, mikroyapı, mekanik özellikler ve işlenebilirlik ilişkisi. Politeknik Dergisi 23 2 457–482.
IEEE Y. Özçatalbaş, “Çeliklerin işlenebilirliği: kimyasal bileşim, mikroyapı, mekanik özellikler ve işlenebilirlik ilişkisi”, Politeknik Dergisi, vol. 23, no. 2, pp. 457–482, 2020, doi: 10.2339/politeknik.550000.
ISNAD Özçatalbaş, Yusuf. “Çeliklerin işlenebilirliği: Kimyasal bileşim, mikroyapı, Mekanik özellikler Ve işlenebilirlik ilişkisi”. Politeknik Dergisi 23/2 (June 2020), 457-482. https://doi.org/10.2339/politeknik.550000.
JAMA Özçatalbaş Y. Çeliklerin işlenebilirliği: kimyasal bileşim, mikroyapı, mekanik özellikler ve işlenebilirlik ilişkisi. Politeknik Dergisi. 2020;23:457–482.
MLA Özçatalbaş, Yusuf. “Çeliklerin işlenebilirliği: Kimyasal bileşim, mikroyapı, Mekanik özellikler Ve işlenebilirlik ilişkisi”. Politeknik Dergisi, vol. 23, no. 2, 2020, pp. 457-82, doi:10.2339/politeknik.550000.
Vancouver Özçatalbaş Y. Çeliklerin işlenebilirliği: kimyasal bileşim, mikroyapı, mekanik özellikler ve işlenebilirlik ilişkisi. Politeknik Dergisi. 2020;23(2):457-82.