Research Article
BibTex RIS Cite

Investigation of the Relationship Between the Current, Sound Level, Vibration and Surface Roughness Value of CuZn39Pb3 Material Processed in Lathe Machine

Year 2020, Volume: 23 Issue: 3, 615 - 624, 01.09.2020
https://doi.org/10.2339/politeknik.426106

Abstract

Numerous researches are
being carried out for machining to meet the growing technology and increasing demand.
A significant part of them has been the examination of the relationship between
cutting parameters and surface roughness, tool wear and cutting forces. In
recent years, researches are explained that vibrations, sound level and current
value of the machine have been related to tool wear, surface roughness and cutting
forces. With more economical and easy to use measurements, the machining
process is more understandable and controllable. In this study, the
relationship between
CuZn39Pb3material in
the CNC lathe machine, under the dry cutting conditions, 4 different feed rate,
5 different depth of cuts and 4 different cutting speeds effect on sound level,
vibration, current value and surface roughness values. Analysed by RSM (Response
Surface Methodology). Optimum cutting parameters are determined. As the increased
of feed rate, surface roughness, Sound level, vibration and current value of
the machine increased. Vibration value residue, surface roughness value and
sound level increased. It was investigated
that there is a strong
correlation between the increase of the machine current value and the sound
level

References

  • G. Pantazopoulos, “A review of defects and failures in brass rods and related components,” Practical Failure Analysis, 3: 14-22, (2003).
  • V. Bushlya, D. Johansson, F. Lenrick, J. Stahl ve F. Schultheiss, “Wear mechanisms of uncoated and coated cemented carbide tools in machining lead-free silicon brass,” Wear 377: 143-151, (2017).
  • F. Schultheiss, D. Johansson, V. Bushlya, J. Zhou, K. Nilsson ve J. Stahl, “Comparative study on the machinability of lead-free brass,” Journal of Cleaner Production, 149: 366-377, (2017).
  • M. Hanief, M. F. Wani ve M. Charoo, “Modeling and prediction of cutting forces during the turning of red brass (C23000) using ANN and regression analysis,” Engineering Science and Technology,, 20: 1220-1226, (2017).
  • E. Brinksmeier, W. Preuss, O. Riemer ve R. Rentsch, “Cutting forces, tool wear and surface finish in high speed diamond machining,” Precision Engineering, 49: 293-304, (2017).
  • C. He, W. Zong ve J. Zhang, “Influencing factors and theoretical modeling methods of surface roughness in turning process: State-of-the-art,” International Journal of Machine Tools and Manufacture, 129: 15-26, (2017).
  • C. Moganapriya, R. Rajasekar, K. Ponappa, R. Venkatesh ve S. Jerome, “Influence of Coating Material and Cutting Parameters on Surface Roughness and Material Removal Rate in Turning Process Using Taguchi Method,” Materials Today:Proceedings, 5: 8532-8538, (2018).
  • G. Zheng, R. Xu, X. Cheng, G. Zhao, L. Li ve J. Zhao, “Effect of cutting parameters on wear behavior of coated tool and surface roughness in high-speed turning of 300M,” Measurement, 125: 99-108, (2018).
  • A. S. More, W. Jiang, W. D. Brown ve A. P. Malshe, “Tool wear and machining performance of cBN–TiN coated carbide inserts and PCBN compact inserts in turning AISI 4340 hardened steel,” Journal of Materials Processing Technology, 180: 253-262, (2006).
  • S. R. Das, D. Dhupal ve A. Kumar, “Experimental investigation into machinability of hardened AISI 4140 steel using TiN coated ceramic tool,” Measurement, 62: 108-126, (2015).
  • E. Aslan, N. Camuşcu ve B. Bingören, “Design optimization of cutting parameters when turning hardened AISI 4140 steel (63 HRC) with Al2O3 + TiCN mixed ceramic tool,” Materials & Design, 28: 1618-1622, (2007).
  • İ. Asiltürk ve H. Akkuş, “Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method,” Measurement, 44: 1697-1704, (2011).
  • H. Aouici, M. A. Yallese, K. Chaoui, T. Mabrouki ve J. Rigal, “Analysis of surface roughness and cutting force components in hard turning with CBN tool: Prediction model and cutting conditions optimization,” Measurement, 45: 344-353, (2012).
  • G. C. Benga ve A. M. Abrao, “Turning of hardened 100Cr6 bearing steel with ceramic and PCBN cutting tools,” Journal of Materials Processing Technology, 143: 237-241, (2003).
  • Z. Hessainia, A. Belbah, M. A. Yallese, T. Mabrouki ve J. F. Rigal, “On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations,” Measurement, 46: 1671-1681, (2013).
  • M. A. Yallese, K. Chaoui, N. Zeghib, L. Boulanouar ve J. F. Rigal, “Hard machining of hardened bearing steel using cubic boron nitride tool,” Journal of materials processing technology , 209: 1092-1104, (2009).
  • M. Siddhpura ve R. Paurabally, “A review of chatter vibration research in turning,” International Journal of Machine Tools and Manufacture, 61: 27-47, (2012).
  • G. Quintana ve J. Ciurana, “Chatter in machining processes: A review,” International Journal of Machine Tools and Manufacture, 51: 363-376, (2011).
  • R. Kishore, S. Choudhury ve K. Orra, “On-line control of machine tool vibration in turning operation using electro-magneto rheological damper,” Journal of Manufacturing Processes, 31: 187-198, (2018).
  • E. Plaza ve P. Lopez, “Application of the wavelet packet transform to vibration signals for surface roughness monitoring in CNC turning operations,” Mechanical Systems and Signal Processing, 98: 902-919, (2018).
  • A. Şahinoğlu, Ş. Karabulut ve A. Güllü, “Study on Spindle Vibration and Surface Finish in Turning of Al 7075,” Solid State Phenomena, 261: 321-327, (2017).
  • Ş. Karabulut ve A. Şahinoğlu, “Effect of the cutting parameters on surface roughness, power consumption and machine noise in machining of R260 steel,” Politeknik Dergisi, 21(1): 237-244, (2018).
  • A. Şahinoğlu, A. Gülllü ve M. Dönertaş, “GGG50 Malzemenin Torna Tezgâhında İşlenmesinde Kesme Parametrelerinin Titreşim, Ses Şiddeti ve Yüzey Pürüzlülüğü Üzerinde Etkisinin Araştırılması,” Sinop Üniversitesi Fen Bilimleri Dergisi, 2(1): 67-79, 2017.
  • A. Aggarwal, H. Singh, P. Kumar ve M. Singh, “Optimizing power consumption for CNC turned parts using response surface methodology and Taguchi’s technique—A comparative analysis,” journal of materials processing technology, 200: 373-384, (2008).
  • S. A. Bagaber ve A. R. Yusoff, “Multi-objective optimization of cutting parameters to minimize power consumption in dry turning of stainless steel 316,” Journal of Cleaner Production, 157: 30-46, (2017).
  • X. Li ve S. K. Tso, “Drill wear monitoring based on current signals,” Wear, 231: 172-178, (1999).
  • D. R. Salgado ve F. J. Alonso, “An approach based on current and sound signals for in-process tool wear monitoring,” International Journal of Machine Tools & Manufacture, 47: 2140-2152, (2007).
  • L. Zhou, J. Li, F. Li, Q. Meng, J. Li ve X. Xu, “Energy consumption model and energy efficiency of machine tools: a comprehensive literature review,” Journal of Cleaner Production, 112: 3721-3734, (2016).
  • R. K. Bhushan, “Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites,” Journal of Cleaner Production, 39: 242-254, (2013).
  • K. Bouacha, M. A. Yallese, T. Mabrouki ve J. Rigal, “Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool,” Int. Journal of Refractory Metals & Hard Materials, 28: 349-361, (2010).
  • S. Saini , I. S. Ahuja ve V. S. Sharma, “Influence of cutting parameters on tool wear and surface roughness in hard turning of AISI H11 tool steel using ceramic tools,” International Journal of Precision Engineering and Manufacturing, 13: 1295-1302, (2012).
  • V. N. Gaitonde, S. R. Karnik, L. Figueira ve P. Davim, “Analysis of Machinability During Hard Turning of Cold Work Tool Steel (Type: AISI D2),” Materials and Manufacturing Processes, 24: 1373-1382, (2009).
  • S. Chinchanikar ve S. K. Choudhury, “Effect of work material hardness and cutting parameters on performance of coated carbide tool when turning hardened steel: An optimization approach,” Measurement, 46: 1572-1584, (2013).
  • M. Bezerra, R. Santelli, E. Oliveira, L. Villar ve L. Escaleira, “Response surface methodology (RSM) as a tool for optimization in analytical chemistry,” Talanta, 76(5): 965-977, (2008).
  • A. Şahinoğlu ve A. Güllü, “Akıllı Üretim Tezgahı ve Bu Tezgahın Kontrolü”. Türkiye Cumhuriyeti Patent TR 2014 14379 B, (24 Nisan 2018).
  • B. Prasad ve M. Babu, “Correlation between vibration amplitude and tool wear in turning: Numerical and experimental analysis,” Engineering Science and Technology,an International Journal, 20: 197-211, (2017).

CuZn39Pb3 malzemenin torna tezgâhında işlenmesinde oluşan akım, ses şiddeti, titreşim ve yüzey pürüzlülük değeri arasındaki ilişkinin incelenmesi

Year 2020, Volume: 23 Issue: 3, 615 - 624, 01.09.2020
https://doi.org/10.2339/politeknik.426106

Abstract

Gelişen teknoloji ve artan talep
miktarını karşılamak üzere talaşlı imalata yönelik birçok araştırma
yapılmaktadır. Bunların önemli bir kısmı kesme parametreleri ile yüzey
pürüzlülüğü, takım aşınması ve kesme kuvvetlerinin ilişkisinin incelenmesi
şeklinde olmuştur. Son yıllarda yapılan çalışmalarda titreşim, ses şiddeti ve
tezgâhın çektiği akım değeri ile takım aşınması, yüzey pürüzlülüğü ve kesme
kuvvetleri arasında ilişki kurulmuştur. Daha ekonomik ve alınması kolay
ölçümler ile talaşlı imalat süreci daha anlaşılır ve kontrol edilebilir bir
seviyeye gelmektedir. Bu çalışmada CNC torna tezgâhında, kuru kesme
şartlarında, CuZn39Pb3 malzeme, 4 farklı ilerleme, 5 faklı talaş derinliği ve 4
farklı kesme hızında oluşan ses şiddeti, titreşim, tezgâhın çektiği akım değeri
ve yüzey pürüzlülük değerleri arasındaki ilişki incelenmiştir. RSM (Response Surface
Methodology) ile analiz edilmiştir. Optimum kesme parametreleri belirlenmiştir.
İlerleme miktarı arttıkça yüzey pürüzlülük, ses şiddeti, titreşim ve tezgâhın
çektiği akım değerinin arttığı görülmüştür. Titreşim değeri arttıkça, yüzey
pürüzlülük değerinin ve ses şiddetinin artığı görülmüştür. Tezgâh akım
değerinin artması ile ses şiddetinin arasında güçlü bir ilişki olduğu
incelenmiştir.

References

  • G. Pantazopoulos, “A review of defects and failures in brass rods and related components,” Practical Failure Analysis, 3: 14-22, (2003).
  • V. Bushlya, D. Johansson, F. Lenrick, J. Stahl ve F. Schultheiss, “Wear mechanisms of uncoated and coated cemented carbide tools in machining lead-free silicon brass,” Wear 377: 143-151, (2017).
  • F. Schultheiss, D. Johansson, V. Bushlya, J. Zhou, K. Nilsson ve J. Stahl, “Comparative study on the machinability of lead-free brass,” Journal of Cleaner Production, 149: 366-377, (2017).
  • M. Hanief, M. F. Wani ve M. Charoo, “Modeling and prediction of cutting forces during the turning of red brass (C23000) using ANN and regression analysis,” Engineering Science and Technology,, 20: 1220-1226, (2017).
  • E. Brinksmeier, W. Preuss, O. Riemer ve R. Rentsch, “Cutting forces, tool wear and surface finish in high speed diamond machining,” Precision Engineering, 49: 293-304, (2017).
  • C. He, W. Zong ve J. Zhang, “Influencing factors and theoretical modeling methods of surface roughness in turning process: State-of-the-art,” International Journal of Machine Tools and Manufacture, 129: 15-26, (2017).
  • C. Moganapriya, R. Rajasekar, K. Ponappa, R. Venkatesh ve S. Jerome, “Influence of Coating Material and Cutting Parameters on Surface Roughness and Material Removal Rate in Turning Process Using Taguchi Method,” Materials Today:Proceedings, 5: 8532-8538, (2018).
  • G. Zheng, R. Xu, X. Cheng, G. Zhao, L. Li ve J. Zhao, “Effect of cutting parameters on wear behavior of coated tool and surface roughness in high-speed turning of 300M,” Measurement, 125: 99-108, (2018).
  • A. S. More, W. Jiang, W. D. Brown ve A. P. Malshe, “Tool wear and machining performance of cBN–TiN coated carbide inserts and PCBN compact inserts in turning AISI 4340 hardened steel,” Journal of Materials Processing Technology, 180: 253-262, (2006).
  • S. R. Das, D. Dhupal ve A. Kumar, “Experimental investigation into machinability of hardened AISI 4140 steel using TiN coated ceramic tool,” Measurement, 62: 108-126, (2015).
  • E. Aslan, N. Camuşcu ve B. Bingören, “Design optimization of cutting parameters when turning hardened AISI 4140 steel (63 HRC) with Al2O3 + TiCN mixed ceramic tool,” Materials & Design, 28: 1618-1622, (2007).
  • İ. Asiltürk ve H. Akkuş, “Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method,” Measurement, 44: 1697-1704, (2011).
  • H. Aouici, M. A. Yallese, K. Chaoui, T. Mabrouki ve J. Rigal, “Analysis of surface roughness and cutting force components in hard turning with CBN tool: Prediction model and cutting conditions optimization,” Measurement, 45: 344-353, (2012).
  • G. C. Benga ve A. M. Abrao, “Turning of hardened 100Cr6 bearing steel with ceramic and PCBN cutting tools,” Journal of Materials Processing Technology, 143: 237-241, (2003).
  • Z. Hessainia, A. Belbah, M. A. Yallese, T. Mabrouki ve J. F. Rigal, “On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations,” Measurement, 46: 1671-1681, (2013).
  • M. A. Yallese, K. Chaoui, N. Zeghib, L. Boulanouar ve J. F. Rigal, “Hard machining of hardened bearing steel using cubic boron nitride tool,” Journal of materials processing technology , 209: 1092-1104, (2009).
  • M. Siddhpura ve R. Paurabally, “A review of chatter vibration research in turning,” International Journal of Machine Tools and Manufacture, 61: 27-47, (2012).
  • G. Quintana ve J. Ciurana, “Chatter in machining processes: A review,” International Journal of Machine Tools and Manufacture, 51: 363-376, (2011).
  • R. Kishore, S. Choudhury ve K. Orra, “On-line control of machine tool vibration in turning operation using electro-magneto rheological damper,” Journal of Manufacturing Processes, 31: 187-198, (2018).
  • E. Plaza ve P. Lopez, “Application of the wavelet packet transform to vibration signals for surface roughness monitoring in CNC turning operations,” Mechanical Systems and Signal Processing, 98: 902-919, (2018).
  • A. Şahinoğlu, Ş. Karabulut ve A. Güllü, “Study on Spindle Vibration and Surface Finish in Turning of Al 7075,” Solid State Phenomena, 261: 321-327, (2017).
  • Ş. Karabulut ve A. Şahinoğlu, “Effect of the cutting parameters on surface roughness, power consumption and machine noise in machining of R260 steel,” Politeknik Dergisi, 21(1): 237-244, (2018).
  • A. Şahinoğlu, A. Gülllü ve M. Dönertaş, “GGG50 Malzemenin Torna Tezgâhında İşlenmesinde Kesme Parametrelerinin Titreşim, Ses Şiddeti ve Yüzey Pürüzlülüğü Üzerinde Etkisinin Araştırılması,” Sinop Üniversitesi Fen Bilimleri Dergisi, 2(1): 67-79, 2017.
  • A. Aggarwal, H. Singh, P. Kumar ve M. Singh, “Optimizing power consumption for CNC turned parts using response surface methodology and Taguchi’s technique—A comparative analysis,” journal of materials processing technology, 200: 373-384, (2008).
  • S. A. Bagaber ve A. R. Yusoff, “Multi-objective optimization of cutting parameters to minimize power consumption in dry turning of stainless steel 316,” Journal of Cleaner Production, 157: 30-46, (2017).
  • X. Li ve S. K. Tso, “Drill wear monitoring based on current signals,” Wear, 231: 172-178, (1999).
  • D. R. Salgado ve F. J. Alonso, “An approach based on current and sound signals for in-process tool wear monitoring,” International Journal of Machine Tools & Manufacture, 47: 2140-2152, (2007).
  • L. Zhou, J. Li, F. Li, Q. Meng, J. Li ve X. Xu, “Energy consumption model and energy efficiency of machine tools: a comprehensive literature review,” Journal of Cleaner Production, 112: 3721-3734, (2016).
  • R. K. Bhushan, “Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites,” Journal of Cleaner Production, 39: 242-254, (2013).
  • K. Bouacha, M. A. Yallese, T. Mabrouki ve J. Rigal, “Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool,” Int. Journal of Refractory Metals & Hard Materials, 28: 349-361, (2010).
  • S. Saini , I. S. Ahuja ve V. S. Sharma, “Influence of cutting parameters on tool wear and surface roughness in hard turning of AISI H11 tool steel using ceramic tools,” International Journal of Precision Engineering and Manufacturing, 13: 1295-1302, (2012).
  • V. N. Gaitonde, S. R. Karnik, L. Figueira ve P. Davim, “Analysis of Machinability During Hard Turning of Cold Work Tool Steel (Type: AISI D2),” Materials and Manufacturing Processes, 24: 1373-1382, (2009).
  • S. Chinchanikar ve S. K. Choudhury, “Effect of work material hardness and cutting parameters on performance of coated carbide tool when turning hardened steel: An optimization approach,” Measurement, 46: 1572-1584, (2013).
  • M. Bezerra, R. Santelli, E. Oliveira, L. Villar ve L. Escaleira, “Response surface methodology (RSM) as a tool for optimization in analytical chemistry,” Talanta, 76(5): 965-977, (2008).
  • A. Şahinoğlu ve A. Güllü, “Akıllı Üretim Tezgahı ve Bu Tezgahın Kontrolü”. Türkiye Cumhuriyeti Patent TR 2014 14379 B, (24 Nisan 2018).
  • B. Prasad ve M. Babu, “Correlation between vibration amplitude and tool wear in turning: Numerical and experimental analysis,” Engineering Science and Technology,an International Journal, 20: 197-211, (2017).
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Abidin Şahinoğlu 0000-0003-0040-442X

Abdulkadir Güllü 0000-0003-1088-4105

Publication Date September 1, 2020
Submission Date May 23, 2018
Published in Issue Year 2020 Volume: 23 Issue: 3

Cite

APA Şahinoğlu, A., & Güllü, A. (2020). CuZn39Pb3 malzemenin torna tezgâhında işlenmesinde oluşan akım, ses şiddeti, titreşim ve yüzey pürüzlülük değeri arasındaki ilişkinin incelenmesi. Politeknik Dergisi, 23(3), 615-624. https://doi.org/10.2339/politeknik.426106
AMA Şahinoğlu A, Güllü A. CuZn39Pb3 malzemenin torna tezgâhında işlenmesinde oluşan akım, ses şiddeti, titreşim ve yüzey pürüzlülük değeri arasındaki ilişkinin incelenmesi. Politeknik Dergisi. September 2020;23(3):615-624. doi:10.2339/politeknik.426106
Chicago Şahinoğlu, Abidin, and Abdulkadir Güllü. “CuZn39Pb3 Malzemenin Torna tezgâhında işlenmesinde oluşan akım, Ses şiddeti, titreşim Ve yüzey pürüzlülük değeri arasındaki ilişkinin Incelenmesi”. Politeknik Dergisi 23, no. 3 (September 2020): 615-24. https://doi.org/10.2339/politeknik.426106.
EndNote Şahinoğlu A, Güllü A (September 1, 2020) CuZn39Pb3 malzemenin torna tezgâhında işlenmesinde oluşan akım, ses şiddeti, titreşim ve yüzey pürüzlülük değeri arasındaki ilişkinin incelenmesi. Politeknik Dergisi 23 3 615–624.
IEEE A. Şahinoğlu and A. Güllü, “CuZn39Pb3 malzemenin torna tezgâhında işlenmesinde oluşan akım, ses şiddeti, titreşim ve yüzey pürüzlülük değeri arasındaki ilişkinin incelenmesi”, Politeknik Dergisi, vol. 23, no. 3, pp. 615–624, 2020, doi: 10.2339/politeknik.426106.
ISNAD Şahinoğlu, Abidin - Güllü, Abdulkadir. “CuZn39Pb3 Malzemenin Torna tezgâhında işlenmesinde oluşan akım, Ses şiddeti, titreşim Ve yüzey pürüzlülük değeri arasındaki ilişkinin Incelenmesi”. Politeknik Dergisi 23/3 (September 2020), 615-624. https://doi.org/10.2339/politeknik.426106.
JAMA Şahinoğlu A, Güllü A. CuZn39Pb3 malzemenin torna tezgâhında işlenmesinde oluşan akım, ses şiddeti, titreşim ve yüzey pürüzlülük değeri arasındaki ilişkinin incelenmesi. Politeknik Dergisi. 2020;23:615–624.
MLA Şahinoğlu, Abidin and Abdulkadir Güllü. “CuZn39Pb3 Malzemenin Torna tezgâhında işlenmesinde oluşan akım, Ses şiddeti, titreşim Ve yüzey pürüzlülük değeri arasındaki ilişkinin Incelenmesi”. Politeknik Dergisi, vol. 23, no. 3, 2020, pp. 615-24, doi:10.2339/politeknik.426106.
Vancouver Şahinoğlu A, Güllü A. CuZn39Pb3 malzemenin torna tezgâhında işlenmesinde oluşan akım, ses şiddeti, titreşim ve yüzey pürüzlülük değeri arasındaki ilişkinin incelenmesi. Politeknik Dergisi. 2020;23(3):615-24.