Research Article
BibTex RIS Cite

Classification of Power Quality Disturbances with Hilbert-Huang Transform, Genetic Algorithm and Artificial Intelligence/Machine Learning Methods

Year 2020, Volume: 23 Issue: 4, 1219 - 1229, 01.12.2020
https://doi.org/10.2339/politeknik.508773

Abstract

In this study, Hilbert-Huang Transform method and
statistical features are obtained to classify Power Quality (PQ) Disturbances.
The appropriate features are selected by the Genetic Algorithm (GA) and
k-Nearest Neighbor classification approach. Models based on Artificial
Intelligence and Machine Learning methods are formed and test process is
performed by using data from experimental setup. It is produced by using
mathematical equations together with noisy conditions (40 dB, 30 dB and 20 dB).
In addition, Power Quality Disturbances data from the experimental setup is
also used in this study. First of all, Empirical Mode Decomposition (EMD)
method is applied to the signals. Then, by applying Hilbert transformation
(HT), statistical features and necessary features are extracted. The same
procedure is repeated for Ensemble Empirical Mode Decomposition (EEMD). GA +
KNN wrapper approach is used to select the required ones according to the
number of extracted features. Power Quality Disturbances models are created
based on Multilayer Perceptron (MLP) and k-Nearest Neighbour classifier (KNN)
methods. The performance of EEMD + HT + GA + KNN classification model for 9
single and 9 multiple types of disruption is 99.15% for synthetic data and
99.02% for experimental data.  Compared
to the literature, EEMD + HT + GA + KNN method has the ability to distinguish 9
multiple PQ disturbances and the overall performance gives the best performance
with a rate of 99.12%.

References

  • Abdoos, A. A., Mianaei, P. K., & Ghadikolaei, M. R. (2016). Combined VMD-SVM based feature selection method for classification of power quality events. Applied Soft Computing, 38, 637-646.
  • Ribeiro, P. F., Duque, C. A., Ribeiro, P. M., & Cerqueira, A. S. (2013). Power systems signal processing for smart grids. John Wiley & Sons.
  • Lee, Ian WC, and Pradipta K. Dash. "S-transform-based intelligent system for classification of power quality disturbance signals." IEEE Transactions on Industrial Electronics 50.4 (2003): 800-805.
  • Sahani, M., & Dash, P. K. (2018). Variational Mode Decomposition and Weighted Online Sequential Extreme Learning Machine for Power Quality Event Patterns Recognition. Neurocomputing.
  • Ribeiro, E. G., Mendes, T. M., Dias, G. L., Faria, E. R., Viana, F. M., Barbosa, B. H., & Ferreira, D. D. (2018). Real-time system for automatic detection and classification of single and multiple power quality disturbances. Measurement, 128, 276-283.
  • Kapoor, R., Gupta, R., Jha, S., & Kumar, R. (2018). Boosting performance of power quality event identification with KL Divergence measure and standard deviation. Measurement, 126, 134-142.
  • Khokhar, S., Zin, A. A. M., Memon, A. P., & Mokhtar, A. S. (2017). A new optimal feature selection algorithm for classification of power quality disturbances using discrete wavelet transform and probabilistic neural network. Measurement, 95, 246-259.
  • Moravej, Z., Banihashemi, S. A., & Velayati, M. H. (2009). Power quality events classification and recognition using a novel support vector algorithm. Energy Conversion and Management, 50(12), 3071-3077.
  • Ahila, R., Sadasivam, V., & Manimala, K. (2015). An integrated PSO for parameter determination and feature selection of ELM and its application in classification of power system disturbances. Applied Soft Computing, 32, 23-37.
  • Babu, N. R., & Mohan, B. J. (2017). Fault classification in power systems using EMD and SVM. Ain Shams Engineering Journal, 8(2), 103-111.
  • Drummond, C. F., & Sutanto, D. (2010). Classification of power quality disturbances using the iterative Hilbert Huang transform.
  • Yang, L., Yu, J., & Lai, Y. (2010, March). Disturbance source identification of voltage sags based on Hilbert-Huang transform. In Power and Energy Engineering Conference (APPEEC), 2010 Asia-Pacific (pp. 1-4). IEEE.
  • Hafiz, F., Chowdhury, A. H., & Shahnaz, C. (2012, December). An approach for classification of power quality disturbances based on Hilbert Huang transform and Relevance vector machine. In Electrical & Computer Engineering (ICECE), 2012 7th International Conference on (pp. 201-204). IEEE.
  • Önal, Y., & Turhal, Ü. Ç. (2013, May). The orthogonal Hilbert-Huang transform application in voltage flicker analysis. In Power Engineering, Energy and Electrical Drives (POWERENG), 2013 Fourth International Conference on (pp. 700-704). IEEE.
  • Senroy, N., Suryanarayanan, S., & Ribeiro, P. F. (2007). An improved Hilbert–Huang method for analysis of time-varying waveforms in power quality. IEEE Transactions on Power Systems, 22(4), 1843-1850.
  • Manjula, M., Mishra, S., & Sarma, A. V. R. S. (2013). Empirical mode decomposition with Hilbert transform for classification of voltage sag causes using probabilistic neural network. International Journal of Electrical Power & Energy Systems, 44(1), 597-603.
  • Ktonas, P. Y., & Papp, N. (1980). Instantaneous envelope and phase extraction from real signals: theory, implementation, and an application to EEG analysis. Signal Processing, 2(4), 373-385.
  • Picinbono, B. (1997). On instantaneous amplitude and phase of signals. IEEE Transactions on signal processing, 45(3), 552-560.
  • Huang, et al. "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis." Proc. R. Soc. Lond. A (1998) 454, 903–995
  • Wu, Z., & Huang, N. E. (2009). Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in adaptive data analysis, 1(01), 1-41.
  • Holland, J. H., “Genetic algorithms”, Scientific American, 267(1): 66-73, 1992.
  • P. N. Tan, V. Kumar, and M. Steinbach, “Introduction to Data Mining”, Pearson, 2005.
  • Fix E, Hodges JL, Jr (1951) Discriminatory analysis, nonparametric discrimination. USAF School of Aviation Medicine, Randolph Field, Tex., Project 21-49-004, Rept. 4, Contract AF41(128)-31, February 1951.
  • Karasu, S., & Saraç, Z. (2018). Investigation of power quality disturbances by using 2D discrete orthonormal S-transform, machine learning and multi-objective evolutionary algorithms. Swarm and Evolutionary Computation.
  • Karasu, S., & Saraç, Z. (2018). Classification of Power Quality Disturbances with 2D Discrete Wavelet Transform and Bagged Decision Trees Method. JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 21(4), 849-855.
  • Karasu, S., & Saraç, Z. (2018, May). Classification of power quality events signals with pattern recognition methods by using Hilbert transform and genetic algorithms. In 2018 26th Signal Processing and Communications Applications Conference (SIU)(pp. 1-4). IEEE.
  • Karasu, S., & Saraç, Z. (2017, May). Classification of power quality disturbances with S-transform and artificial neural networks method. In Signal Processing and Communications Applications Conference (SIU), 2017 25th (pp. 1-4). IEEE.
  • Mahela, Om Prakash, Abdul Gafoor Shaik, and Neeraj Gupta. "A critical review of detection and classification of power quality events." Renewable and Sustainable Energy Reviews 41 (2015): 495-505.
  • Saini, M. K., & Kapoor, R. (2012). Classification of power quality events–a review. International Journal of Electrical Power & Energy Systems, 43(1), 11-19.
  • Kumar, R., Singh, B., Shahani, D. T., Chandra, A., & Al-Haddad, K. (2015). Recognition of power-quality disturbances using S-transform-based ANN classifier and rule-based decision tree. IEEE Transactions on Industry Applications, 51(2), 1249-1258.
  • Wang, M., Zhou, H., Yang, S., Jin, L., & Jiao, L. (2016). Robust compressive features based power quality events classification with Analog–Digital Mixing Network (ADMN). Neurocomputing, 171, 685-692.
  • Sebastian, P., & DŚa, P. A. (2015, August). Implementation of a Power Quality signal classification system using wavelet based energy distribution and neural network. In Power and Advanced Control Engineering (ICPACE), 2015 International Conference on (pp. 157-161). IEEE.
  • Ray, P. K., Mohanty, S. R., & Kishor, N. (2013). Classification of power quality disturbances due to environmental characteristics in distributed generation system. IEEE Transactions on sustainable energy, 4(2), 302-313.
  • He, S., Li, K., & Zhang, M. (2013). A real-time power quality disturbances classification using hybrid method based on S-transform and dynamics. IEEE transactions on instrumentation and measurement, 62(9), 2465-2475.
  • Khadse, C. B., Chaudhari, M. A., & Borghate, V. B. (2016). Conjugate gradient back-propagation based artificial neural network for real time power quality assessment. International Journal of Electrical Power & Energy Systems, 82, 197-206.
  • Camarena-Martinez, D., Valtierra-Rodriguez, M., Perez-Ramirez, C. A., Amezquita-Sanchez, J. P., de Jesus Romero-Troncoso, R., & Garcia-Perez, A. (2016). Novel downsampling empirical mode decomposition approach for power quality analysis. IEEE Transactions on Industrial Electronics, 63(4), 2369-2378.
  • Biswal, M., & Dash, P. K. (2013). Detection and characterization of multiple power quality disturbances with a fast S-transform and decision tree based classifier. Digital Signal Processing, 23(4), 1071-1083.

Güç Kalitesi Bozulmalarının Hilbert-Huang Dönüşümü, Genetik Algoritma Ve Yapay Zeka/Makine Öğrenmesi Yöntemleri İle Sınıflandırılması

Year 2020, Volume: 23 Issue: 4, 1219 - 1229, 01.12.2020
https://doi.org/10.2339/politeknik.508773

Abstract

Bu
çalışmada Güç Kalitesi (GK) Bozulmalarını sınıflandırmak için Hilbert-Huang
Dönüşümü yöntemi ve istatistiksel özellikler ile öznitelikler elde
edilmektedir. Elde edilen özniteliklerden uygun olanları Genetik Algoritma (GA)
k-En Yakın Komşu sınıflandırma yaklaşımı ile seçilmektedir. Yapay Zeka ve
Makine Öğrenmesi yöntemlerine dayalı modeller oluşturulmakta ve deneysel
düzenekten alınan veriler kullanılarak test işlemi yapılmaktadır. Gürültülü
durumlar (40 dB, 30 dB ve 20 dB) ile birlikte matematiksel eşitlikler
kullanılarak üretilmektedir. Bunun yanında deneysel düzenekten elde edilen Güç
Kalitesi Bozulma verisi de bu çalışmada kullanılmaktadır. Sinyallere öncelikle
Ampirik Kip Ayırışımı (EMD) yöntemi uygulanmaktadır. Daha sonra Hilbert
dönüşümü (HT) neticesinde istatistiksel özellikler ile gerekli öznitelikler
çıkartılmaktadır. Aynı işlem Grupsal Ampirik Kip Ayrışımı (EEMD) yöntemi için
tekrarlanmaktadır. Çıkartılan özniteliklerin sayısı itibari ile gerekli
olanlarının seçilebilmesi için GA + KNN sarmalama yaklaşımı kullanılmaktadır.
Çok katmanlı algılayıcı (MLP) ve KNN yaklaşımları ile Güç Kalitesi
Bozulmalarını sınıflandıran modeller oluşturulmaktadır. 9 adet tekli, 9 adet
çoklu bozulma türü için oluşturulan EEMD + HT + GA + KNN sınıflandırma
modelinin başarımı sentetik veriler için %99.15, deneysel veriler için % 99.02
olarak elde edilmektedir. Literatürdeki çalışmalar ile kıyaslandığında elde
edilen EEMD + HT + GA + KNN yönteminin, 9 adet çoklu GK bozulmasını ayırt
edebilme özelliğine sahip olduğu ve %99.12 lik genel başarım oranı ile en iyi
başarımı veren yöntem olduğu sonuçlarına varılmaktadır.

References

  • Abdoos, A. A., Mianaei, P. K., & Ghadikolaei, M. R. (2016). Combined VMD-SVM based feature selection method for classification of power quality events. Applied Soft Computing, 38, 637-646.
  • Ribeiro, P. F., Duque, C. A., Ribeiro, P. M., & Cerqueira, A. S. (2013). Power systems signal processing for smart grids. John Wiley & Sons.
  • Lee, Ian WC, and Pradipta K. Dash. "S-transform-based intelligent system for classification of power quality disturbance signals." IEEE Transactions on Industrial Electronics 50.4 (2003): 800-805.
  • Sahani, M., & Dash, P. K. (2018). Variational Mode Decomposition and Weighted Online Sequential Extreme Learning Machine for Power Quality Event Patterns Recognition. Neurocomputing.
  • Ribeiro, E. G., Mendes, T. M., Dias, G. L., Faria, E. R., Viana, F. M., Barbosa, B. H., & Ferreira, D. D. (2018). Real-time system for automatic detection and classification of single and multiple power quality disturbances. Measurement, 128, 276-283.
  • Kapoor, R., Gupta, R., Jha, S., & Kumar, R. (2018). Boosting performance of power quality event identification with KL Divergence measure and standard deviation. Measurement, 126, 134-142.
  • Khokhar, S., Zin, A. A. M., Memon, A. P., & Mokhtar, A. S. (2017). A new optimal feature selection algorithm for classification of power quality disturbances using discrete wavelet transform and probabilistic neural network. Measurement, 95, 246-259.
  • Moravej, Z., Banihashemi, S. A., & Velayati, M. H. (2009). Power quality events classification and recognition using a novel support vector algorithm. Energy Conversion and Management, 50(12), 3071-3077.
  • Ahila, R., Sadasivam, V., & Manimala, K. (2015). An integrated PSO for parameter determination and feature selection of ELM and its application in classification of power system disturbances. Applied Soft Computing, 32, 23-37.
  • Babu, N. R., & Mohan, B. J. (2017). Fault classification in power systems using EMD and SVM. Ain Shams Engineering Journal, 8(2), 103-111.
  • Drummond, C. F., & Sutanto, D. (2010). Classification of power quality disturbances using the iterative Hilbert Huang transform.
  • Yang, L., Yu, J., & Lai, Y. (2010, March). Disturbance source identification of voltage sags based on Hilbert-Huang transform. In Power and Energy Engineering Conference (APPEEC), 2010 Asia-Pacific (pp. 1-4). IEEE.
  • Hafiz, F., Chowdhury, A. H., & Shahnaz, C. (2012, December). An approach for classification of power quality disturbances based on Hilbert Huang transform and Relevance vector machine. In Electrical & Computer Engineering (ICECE), 2012 7th International Conference on (pp. 201-204). IEEE.
  • Önal, Y., & Turhal, Ü. Ç. (2013, May). The orthogonal Hilbert-Huang transform application in voltage flicker analysis. In Power Engineering, Energy and Electrical Drives (POWERENG), 2013 Fourth International Conference on (pp. 700-704). IEEE.
  • Senroy, N., Suryanarayanan, S., & Ribeiro, P. F. (2007). An improved Hilbert–Huang method for analysis of time-varying waveforms in power quality. IEEE Transactions on Power Systems, 22(4), 1843-1850.
  • Manjula, M., Mishra, S., & Sarma, A. V. R. S. (2013). Empirical mode decomposition with Hilbert transform for classification of voltage sag causes using probabilistic neural network. International Journal of Electrical Power & Energy Systems, 44(1), 597-603.
  • Ktonas, P. Y., & Papp, N. (1980). Instantaneous envelope and phase extraction from real signals: theory, implementation, and an application to EEG analysis. Signal Processing, 2(4), 373-385.
  • Picinbono, B. (1997). On instantaneous amplitude and phase of signals. IEEE Transactions on signal processing, 45(3), 552-560.
  • Huang, et al. "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis." Proc. R. Soc. Lond. A (1998) 454, 903–995
  • Wu, Z., & Huang, N. E. (2009). Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in adaptive data analysis, 1(01), 1-41.
  • Holland, J. H., “Genetic algorithms”, Scientific American, 267(1): 66-73, 1992.
  • P. N. Tan, V. Kumar, and M. Steinbach, “Introduction to Data Mining”, Pearson, 2005.
  • Fix E, Hodges JL, Jr (1951) Discriminatory analysis, nonparametric discrimination. USAF School of Aviation Medicine, Randolph Field, Tex., Project 21-49-004, Rept. 4, Contract AF41(128)-31, February 1951.
  • Karasu, S., & Saraç, Z. (2018). Investigation of power quality disturbances by using 2D discrete orthonormal S-transform, machine learning and multi-objective evolutionary algorithms. Swarm and Evolutionary Computation.
  • Karasu, S., & Saraç, Z. (2018). Classification of Power Quality Disturbances with 2D Discrete Wavelet Transform and Bagged Decision Trees Method. JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 21(4), 849-855.
  • Karasu, S., & Saraç, Z. (2018, May). Classification of power quality events signals with pattern recognition methods by using Hilbert transform and genetic algorithms. In 2018 26th Signal Processing and Communications Applications Conference (SIU)(pp. 1-4). IEEE.
  • Karasu, S., & Saraç, Z. (2017, May). Classification of power quality disturbances with S-transform and artificial neural networks method. In Signal Processing and Communications Applications Conference (SIU), 2017 25th (pp. 1-4). IEEE.
  • Mahela, Om Prakash, Abdul Gafoor Shaik, and Neeraj Gupta. "A critical review of detection and classification of power quality events." Renewable and Sustainable Energy Reviews 41 (2015): 495-505.
  • Saini, M. K., & Kapoor, R. (2012). Classification of power quality events–a review. International Journal of Electrical Power & Energy Systems, 43(1), 11-19.
  • Kumar, R., Singh, B., Shahani, D. T., Chandra, A., & Al-Haddad, K. (2015). Recognition of power-quality disturbances using S-transform-based ANN classifier and rule-based decision tree. IEEE Transactions on Industry Applications, 51(2), 1249-1258.
  • Wang, M., Zhou, H., Yang, S., Jin, L., & Jiao, L. (2016). Robust compressive features based power quality events classification with Analog–Digital Mixing Network (ADMN). Neurocomputing, 171, 685-692.
  • Sebastian, P., & DŚa, P. A. (2015, August). Implementation of a Power Quality signal classification system using wavelet based energy distribution and neural network. In Power and Advanced Control Engineering (ICPACE), 2015 International Conference on (pp. 157-161). IEEE.
  • Ray, P. K., Mohanty, S. R., & Kishor, N. (2013). Classification of power quality disturbances due to environmental characteristics in distributed generation system. IEEE Transactions on sustainable energy, 4(2), 302-313.
  • He, S., Li, K., & Zhang, M. (2013). A real-time power quality disturbances classification using hybrid method based on S-transform and dynamics. IEEE transactions on instrumentation and measurement, 62(9), 2465-2475.
  • Khadse, C. B., Chaudhari, M. A., & Borghate, V. B. (2016). Conjugate gradient back-propagation based artificial neural network for real time power quality assessment. International Journal of Electrical Power & Energy Systems, 82, 197-206.
  • Camarena-Martinez, D., Valtierra-Rodriguez, M., Perez-Ramirez, C. A., Amezquita-Sanchez, J. P., de Jesus Romero-Troncoso, R., & Garcia-Perez, A. (2016). Novel downsampling empirical mode decomposition approach for power quality analysis. IEEE Transactions on Industrial Electronics, 63(4), 2369-2378.
  • Biswal, M., & Dash, P. K. (2013). Detection and characterization of multiple power quality disturbances with a fast S-transform and decision tree based classifier. Digital Signal Processing, 23(4), 1071-1083.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Seçkin Karasu 0000-0001-5277-5252

Zehra Saraç This is me 0000-0003-3330-5196

Publication Date December 1, 2020
Submission Date January 5, 2019
Published in Issue Year 2020 Volume: 23 Issue: 4

Cite

APA Karasu, S., & Saraç, Z. (2020). Güç Kalitesi Bozulmalarının Hilbert-Huang Dönüşümü, Genetik Algoritma Ve Yapay Zeka/Makine Öğrenmesi Yöntemleri İle Sınıflandırılması. Politeknik Dergisi, 23(4), 1219-1229. https://doi.org/10.2339/politeknik.508773
AMA Karasu S, Saraç Z. Güç Kalitesi Bozulmalarının Hilbert-Huang Dönüşümü, Genetik Algoritma Ve Yapay Zeka/Makine Öğrenmesi Yöntemleri İle Sınıflandırılması. Politeknik Dergisi. December 2020;23(4):1219-1229. doi:10.2339/politeknik.508773
Chicago Karasu, Seçkin, and Zehra Saraç. “Güç Kalitesi Bozulmalarının Hilbert-Huang Dönüşümü, Genetik Algoritma Ve Yapay Zeka/Makine Öğrenmesi Yöntemleri İle Sınıflandırılması”. Politeknik Dergisi 23, no. 4 (December 2020): 1219-29. https://doi.org/10.2339/politeknik.508773.
EndNote Karasu S, Saraç Z (December 1, 2020) Güç Kalitesi Bozulmalarının Hilbert-Huang Dönüşümü, Genetik Algoritma Ve Yapay Zeka/Makine Öğrenmesi Yöntemleri İle Sınıflandırılması. Politeknik Dergisi 23 4 1219–1229.
IEEE S. Karasu and Z. Saraç, “Güç Kalitesi Bozulmalarının Hilbert-Huang Dönüşümü, Genetik Algoritma Ve Yapay Zeka/Makine Öğrenmesi Yöntemleri İle Sınıflandırılması”, Politeknik Dergisi, vol. 23, no. 4, pp. 1219–1229, 2020, doi: 10.2339/politeknik.508773.
ISNAD Karasu, Seçkin - Saraç, Zehra. “Güç Kalitesi Bozulmalarının Hilbert-Huang Dönüşümü, Genetik Algoritma Ve Yapay Zeka/Makine Öğrenmesi Yöntemleri İle Sınıflandırılması”. Politeknik Dergisi 23/4 (December 2020), 1219-1229. https://doi.org/10.2339/politeknik.508773.
JAMA Karasu S, Saraç Z. Güç Kalitesi Bozulmalarının Hilbert-Huang Dönüşümü, Genetik Algoritma Ve Yapay Zeka/Makine Öğrenmesi Yöntemleri İle Sınıflandırılması. Politeknik Dergisi. 2020;23:1219–1229.
MLA Karasu, Seçkin and Zehra Saraç. “Güç Kalitesi Bozulmalarının Hilbert-Huang Dönüşümü, Genetik Algoritma Ve Yapay Zeka/Makine Öğrenmesi Yöntemleri İle Sınıflandırılması”. Politeknik Dergisi, vol. 23, no. 4, 2020, pp. 1219-2, doi:10.2339/politeknik.508773.
Vancouver Karasu S, Saraç Z. Güç Kalitesi Bozulmalarının Hilbert-Huang Dönüşümü, Genetik Algoritma Ve Yapay Zeka/Makine Öğrenmesi Yöntemleri İle Sınıflandırılması. Politeknik Dergisi. 2020;23(4):1219-2.