Research Article
BibTex RIS Cite

Toz Metal Al7075/B4C/Si3N4 Kompozit Malzemelerin Üretimi ve Aşınma Özelliklerinin İncelenmesi

Year 2020, Volume: 23 Issue: 4, 1141 - 1151, 01.12.2020
https://doi.org/10.2339/politeknik.585813

Abstract

Bu
çalışmada,  bir alüminyum alaşımı olan
saf Al7075 ile  Al7075/B4C ve
Al7075/B4C/Si3N4 kompozit malzemeleri toz
metalurjisi yöntemi ile üretilmiştir. Üretilen kompozitlerde ön alaşımlı Al7075
tozları kompozit matrisini oluştururken, B4C ve Si3N4
seramik parçacıkları takviye elemanı olarak kullanılmıştır.  Ağırlıkça karışım oranları belirlenen tozlar
3 boyutlu karıştırıcıda 15 dakika boyunca karıştırılmıştır. Karışım tozlar
önceden ısıtılan sıcak presleme kalıbında 450 oC sıcaklıkta 30
dakika boyunca tek yönlü olarak preslenmiştir. Presleme sonrası 90x40x12 mm3
ebatlarında kompozitler elde edilmiştir. Kompozit malzemeler tel erezyon
tezgahında kesilmiş ve CNC torna tezgahında işlenerek aşınma numuneleri
üretilmiştir. Yapılan çalışmalarla üretilen kompozit malzemelerin yoğunluk,
gözeneklilik, sertlik, mikroyapı ve aşınma özellikleri incelenmiştir. Saf
Al7075 alaşımının yoğunluğu kompozit malzemelere göre daha yüksek çıkmıştır. B4C
ve Si3N4 oranlarının artması ile kompozitlerde gözenek
miktarları artmıştır. %5 ve %10 B4C takviyeli kompozit malzemelerde
parçacıklar mikroyapıda homojen dağılmıştır. En yüksek sertlik değeri
Al7075/%15B4C/%2Si3N4 kompozit malzemesinde
(110 HB) elde edilmiştir. En yüksek sürtünme katsayı değerleri ise saf Al7075
alaşımlarında belirlenmiştir. Numunelerin sertlik değerlerindeki artış ile
sürtünme katsayısı değerleri düşmüştür. 

References

  • Chawla, K. K. (2012). Composite materials: science and engineering. Springer Science & Business Media.
  • Gay, D. (2014). Composite materials: design and applications. CRC press.
  • Chawla, K. K. (2006). Metal matrix composites. Materials Science and Technology.
  • Kaczmar, J. W., Pietrzak, K., & Włosiński, W. (2000). The production and application of metal matrix composite materials. Journal of materials processing technology, 106(1-3), 58-67.
  • Pol, N., Verma, G., Pandey, R. P., & Shanmugasundaram, T. (2018). Fabrication of AA7005/TiB2-B4C surface composite by friction stir processing: Evaluation of ballistic behaviour. Defence Technology.
  • Bodunrin, M. O., Alaneme, K. K., & Chown, L. H. (2015). Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. Journal of materials research and technology, 4(4), 434-445.
  • Zhang, L. C., & Attar, H. (2016). Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review. Advanced Engineering Materials, 18(4), 463-475.
  • Yao, Y. T., Jiang, L., Fu, G. F., & Chen, L. Q. (2015). Wear behavior and mechanism of B4C reinforced Mg-matrix composites fabricated by metal-assisted pressureless infiltration technique. Transactions of Nonferrous Metals Society of China, 25(8), 2543-2548.
  • Mazzolani, F. M. (Ed.). (2014). Aluminium structural design (Vol. 443). Springer.
  • Torralba, J. D., Da Costa, C. E., & Velasco, F. (2003). P/M aluminum matrix composites: an overview. Journal of Materials Processing Technology, 133(1-2), 203-206.
  • Tajally, M., Huda, Z., & Masjuki, H. H. (2010). A comparative analysis of tensile and impact-toughness behavior of cold-worked and annealed 7075 aluminum alloy. International Journal of Impact Engineering, 37(4), 425-432.
  • Shorowordi, K. M., Laoui, T., Haseeb, A. S. M. A., Celis, J. P., & Froyen, L. (2003). Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: a comparative study. Journal of Materials Processing Technology, 142(3), 738-743.
  • Ma, Z. Y., Tjong, S. C., Li, Y. L., & Liang, Y. (1997). High temperature creep behavior of nanometric Si3N4 particulate reinforced aluminium composite. Materials Science and Engineering: A, 225(1-2), 125-134.
  • Abdul-Lattef, N. I., Ismail Khedar, A. R., & Goel, S. K. (1985). Preparation of Al-Al 2 O 3-MgO cast particulate composites using MgO coating technique. Journal of materials science letters, 4(4), 385-388.
  • Toptan, F., Kumdalı, F., & Kerti, I. (2006). Al-B4C kompozitlerinin fren diski olarak kullanılabilirliğine genel bir bakış. Metalurji, 145, 11-18.
  • Gromov, A. A., & Chukhlomina, L. N. (Eds.). (2015). Nitride Ceramics: Combustion Synthesis, Properties and Applications. John Wiley & Sons.
  • Surappa, M. K. (2003). Aluminium matrix composites: Challenges and opportunities. Sadhana, 28(1-2), 319-334.
  • Karabulut, Ş., Karakoç, H., & Çıtak, R. (2016). Influence of B4C particle reinforcement on mechanical and machining properties of Al6061/B4C composites. Composites Part B: Engineering, 101, 87-98.
  • Kumar, R., & Dhiman, S. (2013). A study of sliding wear behaviors of Al-7075 alloy and Al-7075 hybrid composite by response surface methodology analysis. Materials & Design, 50, 351-359.
  • Çinici, H., GÖKMEN, U., KIRMIZI, G., & ÇAMKERTEN, R. Sıcak Presleme Yöntemiyle Üretilmiş B4C Takviyeli AA 7xxx Matrisli Fonksiyonel Derecelendirilmiş Malzemelerin Çapraz Kırılma Dayanımının Belirlenmesi. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, 5(1), 383-386.
  • Ambigai, R., & Prabhu, S. (2017). Optimization of friction and wear behaviour of Al–Si3N4 nano composite and Al–Gr–Si3N4 hybrid composite under dry sliding conditions. Transactions of Nonferrous Metals Society of China, 27(5), 986-997.
  • Baradeswaran, A. E. P. A., & Perumal, A. E. (2013). Influence of B4C on the tribological and mechanical properties of Al 7075–B4C composites. Composites Part B: Engineering, 54, 146-152.
  • Sharma, P., Sharma, S., & Khanduja, D. (2015). Production and some properties of Si3N4 reinforced aluminium alloy composites. Journal of Asian Ceramic Societies, 3(3), 352-359.
  • Matik, U., & Tanattı, K. Sıcak Ekstrüze Edilmiş AA7075-Sicp Kompozitlerin Tribolojik Karakteristiklerine Isıl İşlemin Etkisi. Politeknik Dergisi, 20(4), 807-814.
  • Göde, C. (2011). TM ile üretilmiş Alumix-231 SiCp ve B4Cp kompozitlerin farklı üretim yöntemlerinin mekanik özelliklere etkisi.
  • Halil, A. R. I. K., & ORHUN, D. Z. Investigation of Dry Sliding Wear Behavior of Powder Metal (P/M) Materials Produced from Mixture of Fe-Cu-C Powders. Gazi University Journal of Science Part A: Engineering and Innovation, 5(1), 37-48.
  • Höganäs PM-school, “Sintered iron-based materials”, Page: 9-19, (2013).
  • Canakci, A., Arslan, F., & Varol, T. (2013). Effect of volume fraction and size of B4C particles on production and microstructure properties of B4C reinforced aluminium alloy composites. Materials Science and Technology, 29(8), 954-960.
  • Canakci, A., & Arslan, F. (2012). Abrasive wear behaviour of B 4 C particle reinforced Al2024 MMCs. The International Journal of Advanced Manufacturing Technology, 63(5-8), 785-795.
  • Zorzi, J. E., Perottoni, C. A., & Da Jornada, J. A. H. (2005). Hardness and wear resistance of B4C ceramics prepared with several additives. Materials Letters, 59(23), 2932-2935.

Production of Powder Metal Al7075/B4C/Si3N4 Composite Materials and Investigation of Wear Properties

Year 2020, Volume: 23 Issue: 4, 1141 - 1151, 01.12.2020
https://doi.org/10.2339/politeknik.585813

Abstract

In this study, Al7075 alloy, Al7075/B4C
composite material and Al7075/B4C/Si3N4
composite materials were produced by powder metallurgy method. Prealloyed
Al7075 powders were used as matrix material to produce composites. The powders
whose mixing ratios were determined by weight were mixed in the 3D mixer for 15
minutes. The mixture powders were pre-heated in a preheated hot stamping mold
at 450 °C for 30 minutes. 90x40x12 mm3 composites were obtained
after pressing. Composite materials were cut at wire EDM (Electrical discharge
machine) and CNC lathes were processed to produce wear samples. Density,
porosity, hardness, microstructure and abrasion properties of composite
materials produced by the studies were investigated.
The
density of Al7075 alloy was higher than the composites. Pore amount increased
with increasing B4C and Si3N4 ratio. In 5% and
10% B4C reinforced composite materials, the particles were
homogeneously distributed in microstructure. The highest hardness was observed
in Al7075/15% B4C/2%Si3N4 composite material
(110 HB). The highest coefficients of friction were found in the Al7075 alloy,
which was not reinforced. 

References

  • Chawla, K. K. (2012). Composite materials: science and engineering. Springer Science & Business Media.
  • Gay, D. (2014). Composite materials: design and applications. CRC press.
  • Chawla, K. K. (2006). Metal matrix composites. Materials Science and Technology.
  • Kaczmar, J. W., Pietrzak, K., & Włosiński, W. (2000). The production and application of metal matrix composite materials. Journal of materials processing technology, 106(1-3), 58-67.
  • Pol, N., Verma, G., Pandey, R. P., & Shanmugasundaram, T. (2018). Fabrication of AA7005/TiB2-B4C surface composite by friction stir processing: Evaluation of ballistic behaviour. Defence Technology.
  • Bodunrin, M. O., Alaneme, K. K., & Chown, L. H. (2015). Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. Journal of materials research and technology, 4(4), 434-445.
  • Zhang, L. C., & Attar, H. (2016). Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review. Advanced Engineering Materials, 18(4), 463-475.
  • Yao, Y. T., Jiang, L., Fu, G. F., & Chen, L. Q. (2015). Wear behavior and mechanism of B4C reinforced Mg-matrix composites fabricated by metal-assisted pressureless infiltration technique. Transactions of Nonferrous Metals Society of China, 25(8), 2543-2548.
  • Mazzolani, F. M. (Ed.). (2014). Aluminium structural design (Vol. 443). Springer.
  • Torralba, J. D., Da Costa, C. E., & Velasco, F. (2003). P/M aluminum matrix composites: an overview. Journal of Materials Processing Technology, 133(1-2), 203-206.
  • Tajally, M., Huda, Z., & Masjuki, H. H. (2010). A comparative analysis of tensile and impact-toughness behavior of cold-worked and annealed 7075 aluminum alloy. International Journal of Impact Engineering, 37(4), 425-432.
  • Shorowordi, K. M., Laoui, T., Haseeb, A. S. M. A., Celis, J. P., & Froyen, L. (2003). Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: a comparative study. Journal of Materials Processing Technology, 142(3), 738-743.
  • Ma, Z. Y., Tjong, S. C., Li, Y. L., & Liang, Y. (1997). High temperature creep behavior of nanometric Si3N4 particulate reinforced aluminium composite. Materials Science and Engineering: A, 225(1-2), 125-134.
  • Abdul-Lattef, N. I., Ismail Khedar, A. R., & Goel, S. K. (1985). Preparation of Al-Al 2 O 3-MgO cast particulate composites using MgO coating technique. Journal of materials science letters, 4(4), 385-388.
  • Toptan, F., Kumdalı, F., & Kerti, I. (2006). Al-B4C kompozitlerinin fren diski olarak kullanılabilirliğine genel bir bakış. Metalurji, 145, 11-18.
  • Gromov, A. A., & Chukhlomina, L. N. (Eds.). (2015). Nitride Ceramics: Combustion Synthesis, Properties and Applications. John Wiley & Sons.
  • Surappa, M. K. (2003). Aluminium matrix composites: Challenges and opportunities. Sadhana, 28(1-2), 319-334.
  • Karabulut, Ş., Karakoç, H., & Çıtak, R. (2016). Influence of B4C particle reinforcement on mechanical and machining properties of Al6061/B4C composites. Composites Part B: Engineering, 101, 87-98.
  • Kumar, R., & Dhiman, S. (2013). A study of sliding wear behaviors of Al-7075 alloy and Al-7075 hybrid composite by response surface methodology analysis. Materials & Design, 50, 351-359.
  • Çinici, H., GÖKMEN, U., KIRMIZI, G., & ÇAMKERTEN, R. Sıcak Presleme Yöntemiyle Üretilmiş B4C Takviyeli AA 7xxx Matrisli Fonksiyonel Derecelendirilmiş Malzemelerin Çapraz Kırılma Dayanımının Belirlenmesi. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, 5(1), 383-386.
  • Ambigai, R., & Prabhu, S. (2017). Optimization of friction and wear behaviour of Al–Si3N4 nano composite and Al–Gr–Si3N4 hybrid composite under dry sliding conditions. Transactions of Nonferrous Metals Society of China, 27(5), 986-997.
  • Baradeswaran, A. E. P. A., & Perumal, A. E. (2013). Influence of B4C on the tribological and mechanical properties of Al 7075–B4C composites. Composites Part B: Engineering, 54, 146-152.
  • Sharma, P., Sharma, S., & Khanduja, D. (2015). Production and some properties of Si3N4 reinforced aluminium alloy composites. Journal of Asian Ceramic Societies, 3(3), 352-359.
  • Matik, U., & Tanattı, K. Sıcak Ekstrüze Edilmiş AA7075-Sicp Kompozitlerin Tribolojik Karakteristiklerine Isıl İşlemin Etkisi. Politeknik Dergisi, 20(4), 807-814.
  • Göde, C. (2011). TM ile üretilmiş Alumix-231 SiCp ve B4Cp kompozitlerin farklı üretim yöntemlerinin mekanik özelliklere etkisi.
  • Halil, A. R. I. K., & ORHUN, D. Z. Investigation of Dry Sliding Wear Behavior of Powder Metal (P/M) Materials Produced from Mixture of Fe-Cu-C Powders. Gazi University Journal of Science Part A: Engineering and Innovation, 5(1), 37-48.
  • Höganäs PM-school, “Sintered iron-based materials”, Page: 9-19, (2013).
  • Canakci, A., Arslan, F., & Varol, T. (2013). Effect of volume fraction and size of B4C particles on production and microstructure properties of B4C reinforced aluminium alloy composites. Materials Science and Technology, 29(8), 954-960.
  • Canakci, A., & Arslan, F. (2012). Abrasive wear behaviour of B 4 C particle reinforced Al2024 MMCs. The International Journal of Advanced Manufacturing Technology, 63(5-8), 785-795.
  • Zorzi, J. E., Perottoni, C. A., & Da Jornada, J. A. H. (2005). Hardness and wear resistance of B4C ceramics prepared with several additives. Materials Letters, 59(23), 2932-2935.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Halil Karakoç 0000-0002-2444-6037

Publication Date December 1, 2020
Submission Date July 2, 2019
Published in Issue Year 2020 Volume: 23 Issue: 4

Cite

APA Karakoç, H. (2020). Toz Metal Al7075/B4C/Si3N4 Kompozit Malzemelerin Üretimi ve Aşınma Özelliklerinin İncelenmesi. Politeknik Dergisi, 23(4), 1141-1151. https://doi.org/10.2339/politeknik.585813
AMA Karakoç H. Toz Metal Al7075/B4C/Si3N4 Kompozit Malzemelerin Üretimi ve Aşınma Özelliklerinin İncelenmesi. Politeknik Dergisi. December 2020;23(4):1141-1151. doi:10.2339/politeknik.585813
Chicago Karakoç, Halil. “Toz Metal Al7075/B4C/Si3N4 Kompozit Malzemelerin Üretimi Ve Aşınma Özelliklerinin İncelenmesi”. Politeknik Dergisi 23, no. 4 (December 2020): 1141-51. https://doi.org/10.2339/politeknik.585813.
EndNote Karakoç H (December 1, 2020) Toz Metal Al7075/B4C/Si3N4 Kompozit Malzemelerin Üretimi ve Aşınma Özelliklerinin İncelenmesi. Politeknik Dergisi 23 4 1141–1151.
IEEE H. Karakoç, “Toz Metal Al7075/B4C/Si3N4 Kompozit Malzemelerin Üretimi ve Aşınma Özelliklerinin İncelenmesi”, Politeknik Dergisi, vol. 23, no. 4, pp. 1141–1151, 2020, doi: 10.2339/politeknik.585813.
ISNAD Karakoç, Halil. “Toz Metal Al7075/B4C/Si3N4 Kompozit Malzemelerin Üretimi Ve Aşınma Özelliklerinin İncelenmesi”. Politeknik Dergisi 23/4 (December 2020), 1141-1151. https://doi.org/10.2339/politeknik.585813.
JAMA Karakoç H. Toz Metal Al7075/B4C/Si3N4 Kompozit Malzemelerin Üretimi ve Aşınma Özelliklerinin İncelenmesi. Politeknik Dergisi. 2020;23:1141–1151.
MLA Karakoç, Halil. “Toz Metal Al7075/B4C/Si3N4 Kompozit Malzemelerin Üretimi Ve Aşınma Özelliklerinin İncelenmesi”. Politeknik Dergisi, vol. 23, no. 4, 2020, pp. 1141-5, doi:10.2339/politeknik.585813.
Vancouver Karakoç H. Toz Metal Al7075/B4C/Si3N4 Kompozit Malzemelerin Üretimi ve Aşınma Özelliklerinin İncelenmesi. Politeknik Dergisi. 2020;23(4):1141-5.