Research Article
BibTex RIS Cite

Experimental Investigation of Passive Water Cooling in Solar Heating Thermoelectric Generator

Year 2020, Volume: 23 Issue: 4, 1231 - 1236, 01.12.2020
https://doi.org/10.2339/politeknik.613095

Abstract

Bu
çalışmada, güneş enerjisinden elektrik üretmek için bir termoelektrik jeneratör
(TEG) sistemi tasarlanmıştır. TEG'in sıcak yüzeyini ısıtmak için güneş enerjili
iki fazlı kapalı termosifon (TPCT) tipi ısı borusu kullanılmış ve soğuk tarafı
soğutmak için 1200 cc kapasiteli pasif su soğutmalı bir sistem tasarlanmış ve
üretilmiştir. Soğutma sistemi, verimli bir soğutma sağlamak için doğal bir su
sirkülasyonu sağlayan birincil ve ikincil bölümler olarak iki kısma sahiptir.
Literatürdeki çalışmaların çoğunda tek bir TEG kullanılırken, bu çalışmada daha
fazla elektrik üretmek için basit, kolay ve ucuz bir tasarım elde etmek amacıyla
5 TEG kullanılmıştır. Sadece pasif su soğutmanın etkisi değil, aynı zamanda
reflektör kullanmanın sistem verimliliği üzerindeki etkisi deneysel olarak test
edilmiştir. Sistem, reflektör olmayan, yarı reflektör ve tam reflektör olmak
üzere üç farklı koşulda güneş enerjisi ile çalıştırılmıştır. Elektriksel ve
termal veriler bir bilgisayara kaydedilir ve karşılaştırma ve hesaplamalar için
08:00-15:00 saatleri arasında elde edilen veriler kullanılmıştır. Sadece maksimum
açık devre voltajına ulaşılan TEG-1 için, maksimum çıkış gücü, elektriksel
verim ve Seebeck katsayısı hesaplamaları yapılmıştır. Sonuçlar, küçük
kapasiteli pasif su soğutmalı bir ısı borusu kullanıldığında, elektrik üretmek
için 5 adet TEG için gerekli sıcaklık farkına ulaşılabileceğini göstermiştir. 

References

  • Jian L., Tianjun L., Bihong L. “Performance analysis and load matching of a photovoltaic–thermoelectric hybrid system”, Energy Conversion and Management, 105: 891–899, (2015).
  • Tian Y., Zhao C.Y. “A review of solar collectors and thermal energy storage in solar thermal applications”, Applied Energy, 104: 538–553, (2013).
  • Mills D., “Advances in solar thermal electricity technology”, Solar Energy, 76: 19-31, (2004).
  • Pandey A.K., Tyagi V.V., Selvaraj J.A/L., Rahim N.A., Tyagi S.K. “Recent advances in solar photovoltaic systems for emerging trends and advanced applications”, Renewable and Sustainable Energy Reviews, 53: 859-884, (2016).
  • He W., Zhang G., Zhang X., Ji J., Li G., Zhao X. “Recent development and application of thermoelectric generator and cooler”, Applied Energy, 143: 1-25, (2015).
  • Jarman J.T., Khalil E.E., Khalaf E. “Energy analyses of thermoelectric renewable energy sources”. Open J. Energy Efficiency, 2: 143-153, (2013).
  • Angeline A.A., Jayakumar J., Asirvatham L.G., Marshal J.J., Wongwises S. “Power generation enhancement with hybrid thermoelectric generator using biomass waste heat energy”, Experimental Thermal and Fluid Science, 85: 1–12, (2017).
  • Gao H.B., Huang G.H., Li H.J., Qu Z.G., Zhang Y.J. “Development of stove-powered thermoelectric generators: a review”, Applied Thermal Engineering, 96: 297-310, (2016).
  • Orr B., Akbarzadeh A., Mochizuki M., Singh R. “A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes”, Applied Thermal Engineering, 101: 490-495, (2016).
  • Suman S., Khan M.K., Pathak M. “Performance enhancement of solar collectors – A review”, Renewable and Sustainable Energy Reviews, 49: 192–210, (2015).
  • Champier D. “Thermoelectric generators: A review of applications”, Energy Conversion and Management, 140: 167–181, (2017).
  • Sun D., Shen L., Yao Y., Chen H., Jin S., He H. “The real-time study of solar thermoelectric generator”, Applied Thermal Engineering, 119: 347-359, (2017).
  • Baranowski L.L., Snyder G.F., Toberer E.S. “Concentrated solar thermoelectric generators”, Energy & Environmental Science, 5: 9055-9067, (2012).
  • Lertsatitthanakorn C., Jamradloedluk J., Rungsiyopas M. “Electricity generation from a solar parabolic concentrator coupled to a thermoelectric module”, Energy Procedia, 52: 150-158, (2014).
  • Date A., Date A., Dixon C., Akbarzadeh A. “Theoretical and experimental study on heat pipe cooled thermoelectric generators with water heating using concentrated solar thermal energy”, Solar Energy, 105: 656-668, (2014).
  • Date A., Date A., Dixon C., Singh R., Akbarzadeh A. “Theoretical and experimental estimation of limiting input heat flux for thermoelectric power generators with passive cooling”, Solar Energy, 111: 201-217, (2015).
  • Chávez-Urbiola E.A., Vorobiev Y.V. “Investigation of solar hybrid electric/thermal system with radiation concentrator and thermoelectric generator”, International Journal of Photoenergy, 1-7, (2013).
  • Sundarraj P., Taylor R.A., Banerjee D., Maity D., Roy S.S. “Experimental and theoretical analysis of a hybrid solar thermoelectric generator with forced convection cooling”, Journal of Physics D: Applied Physics, 50: 1-11, (2017).
  • Bjørk R., Nielsen K.K. “The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system”, Solar Energy, 120: 187-194, (2015).
  • Makki A., Omer S., Su Y., Sabir H. “Numerical investigation of heat pipe-based photovoltaic–thermoelectric generator (HP-PV/TEG) hybrid system”, Energy Conversion and Management, 112: 274-287, (2016).
  • He W., Su Y., Riffat S.B., Hou JX., Ji J. “Parametrical analysis of the design and performance of a solar heat pipe thermoelectric generator unit”, Applied Energy, 88: 5083-5089, (2011).
  • Li G., Zhang G., He W., Ji J., Lv S., Chen X., Chen H. “Performance analysis on a solar concentrating thermoelectric generator using the micro-channel heat pipe array”, Energy Conversion and Management, 112: 191-198, (2016).
  • Zhang M., Miao L., Kang Y.P., Tanemura S., Fisher C.A.J., Xu G., Li C.X., Fan G.Z. “Efficient, low-cost solar thermoelectric cogenerators comprising evacuated tubular solar collectors and thermoelectric modules”, Applied Energy, 109: 51-59, (2013).
  • Özdemir A.E., Köysal Y., Özbaş E., Atalay T. “The experimental design of solar heating thermoelectric generator with wind cooling chimney”, Energy Conversion and Management, 98: 127-133, (2015).
  • Atalay T., Köysal Y., Özdemir A.E., Özbaş E. “Evaluation of energy efficiency of thermoelectric generator with two-phase thermo-syphon heat pipes and nano-particle fluids”, International Journal of Precision Engineering and Manufacturing-Green Technology, 5 (1): 5-12, (2018).
  • Sajid M., Hassan I., Rahman A. “An overview of cooling of thermoelectric devices”, Renewable and Sustainable Energy Reviews, 78: 15-22, (2017).
  • Chávez-Urbiola E.A., Vorobiev Y.V., Bulat L.P. “Solar hybrid systems with thermoelectric generators”, Solar Energy, 86: 369-378, (2012).
  • Singh R., Tundee S., Akbarzadeh A. “Electric power generation from solar pond using combined thermosyphon and thermoelectric modules”, Solar Energy, 85: 371-378, (2011).
  • Deasy M.J., Baudin N., O'Shaughnessy S.M., Robinson A.J. “Simulation-driven design of a passive liquid cooling system for a thermoelectric generator”, Applied Energy, 205: 499-510, (2017).
  • TECTEG, https://thermoelectric-generator.com/wp-content/uploads/2014/04/SpecTEG1-1263-4.3Thermoelectric-generator1.pdf

Experimental Investigation of Passive Water Cooling in Solar Heating Thermoelectric Generator

Year 2020, Volume: 23 Issue: 4, 1231 - 1236, 01.12.2020
https://doi.org/10.2339/politeknik.613095

Abstract

In this study, a thermoelectric generator (TEG) system
is designed to produce electricity from solar energy. Solar powered two-phase
closed thermosiphon (TPCT) type heat pipe is used to heat the hot surface of
the TEG, and a 1200 cc capacity passive water-cooled system is designed and
manufactured to cool the cold side. The cooling system has two sections as
primary and secondary sections which provide a natural water circulation to
achieve an efficient cooling. A single TEG is used in most studies in the
literature while 5 TEGs are used in this study to obtain a simple, easy and
cheap design to generate more electricity. Not only the effect of passive water
cooling, but also the effect of using a reflector on the system efficiency is
tested experimentally. The system is operated by solar power under three
different conditions as non-reflector, semi-reflector and full-reflector.
Electrical and thermal data are recorded in a computer and data obtained from
08:00 to 15:00 is used for comparison and calculations. Maximum output power,
electrical efficiency and Seebeck coefficient calculations are made for only
TEG-1 in which the maximum open-circuit voltage is reached. Results showed that
using a heat pipe with a small capacity passive water-cooling, the temperature
difference for five TEGs can be reached to generate electricity.

References

  • Jian L., Tianjun L., Bihong L. “Performance analysis and load matching of a photovoltaic–thermoelectric hybrid system”, Energy Conversion and Management, 105: 891–899, (2015).
  • Tian Y., Zhao C.Y. “A review of solar collectors and thermal energy storage in solar thermal applications”, Applied Energy, 104: 538–553, (2013).
  • Mills D., “Advances in solar thermal electricity technology”, Solar Energy, 76: 19-31, (2004).
  • Pandey A.K., Tyagi V.V., Selvaraj J.A/L., Rahim N.A., Tyagi S.K. “Recent advances in solar photovoltaic systems for emerging trends and advanced applications”, Renewable and Sustainable Energy Reviews, 53: 859-884, (2016).
  • He W., Zhang G., Zhang X., Ji J., Li G., Zhao X. “Recent development and application of thermoelectric generator and cooler”, Applied Energy, 143: 1-25, (2015).
  • Jarman J.T., Khalil E.E., Khalaf E. “Energy analyses of thermoelectric renewable energy sources”. Open J. Energy Efficiency, 2: 143-153, (2013).
  • Angeline A.A., Jayakumar J., Asirvatham L.G., Marshal J.J., Wongwises S. “Power generation enhancement with hybrid thermoelectric generator using biomass waste heat energy”, Experimental Thermal and Fluid Science, 85: 1–12, (2017).
  • Gao H.B., Huang G.H., Li H.J., Qu Z.G., Zhang Y.J. “Development of stove-powered thermoelectric generators: a review”, Applied Thermal Engineering, 96: 297-310, (2016).
  • Orr B., Akbarzadeh A., Mochizuki M., Singh R. “A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes”, Applied Thermal Engineering, 101: 490-495, (2016).
  • Suman S., Khan M.K., Pathak M. “Performance enhancement of solar collectors – A review”, Renewable and Sustainable Energy Reviews, 49: 192–210, (2015).
  • Champier D. “Thermoelectric generators: A review of applications”, Energy Conversion and Management, 140: 167–181, (2017).
  • Sun D., Shen L., Yao Y., Chen H., Jin S., He H. “The real-time study of solar thermoelectric generator”, Applied Thermal Engineering, 119: 347-359, (2017).
  • Baranowski L.L., Snyder G.F., Toberer E.S. “Concentrated solar thermoelectric generators”, Energy & Environmental Science, 5: 9055-9067, (2012).
  • Lertsatitthanakorn C., Jamradloedluk J., Rungsiyopas M. “Electricity generation from a solar parabolic concentrator coupled to a thermoelectric module”, Energy Procedia, 52: 150-158, (2014).
  • Date A., Date A., Dixon C., Akbarzadeh A. “Theoretical and experimental study on heat pipe cooled thermoelectric generators with water heating using concentrated solar thermal energy”, Solar Energy, 105: 656-668, (2014).
  • Date A., Date A., Dixon C., Singh R., Akbarzadeh A. “Theoretical and experimental estimation of limiting input heat flux for thermoelectric power generators with passive cooling”, Solar Energy, 111: 201-217, (2015).
  • Chávez-Urbiola E.A., Vorobiev Y.V. “Investigation of solar hybrid electric/thermal system with radiation concentrator and thermoelectric generator”, International Journal of Photoenergy, 1-7, (2013).
  • Sundarraj P., Taylor R.A., Banerjee D., Maity D., Roy S.S. “Experimental and theoretical analysis of a hybrid solar thermoelectric generator with forced convection cooling”, Journal of Physics D: Applied Physics, 50: 1-11, (2017).
  • Bjørk R., Nielsen K.K. “The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system”, Solar Energy, 120: 187-194, (2015).
  • Makki A., Omer S., Su Y., Sabir H. “Numerical investigation of heat pipe-based photovoltaic–thermoelectric generator (HP-PV/TEG) hybrid system”, Energy Conversion and Management, 112: 274-287, (2016).
  • He W., Su Y., Riffat S.B., Hou JX., Ji J. “Parametrical analysis of the design and performance of a solar heat pipe thermoelectric generator unit”, Applied Energy, 88: 5083-5089, (2011).
  • Li G., Zhang G., He W., Ji J., Lv S., Chen X., Chen H. “Performance analysis on a solar concentrating thermoelectric generator using the micro-channel heat pipe array”, Energy Conversion and Management, 112: 191-198, (2016).
  • Zhang M., Miao L., Kang Y.P., Tanemura S., Fisher C.A.J., Xu G., Li C.X., Fan G.Z. “Efficient, low-cost solar thermoelectric cogenerators comprising evacuated tubular solar collectors and thermoelectric modules”, Applied Energy, 109: 51-59, (2013).
  • Özdemir A.E., Köysal Y., Özbaş E., Atalay T. “The experimental design of solar heating thermoelectric generator with wind cooling chimney”, Energy Conversion and Management, 98: 127-133, (2015).
  • Atalay T., Köysal Y., Özdemir A.E., Özbaş E. “Evaluation of energy efficiency of thermoelectric generator with two-phase thermo-syphon heat pipes and nano-particle fluids”, International Journal of Precision Engineering and Manufacturing-Green Technology, 5 (1): 5-12, (2018).
  • Sajid M., Hassan I., Rahman A. “An overview of cooling of thermoelectric devices”, Renewable and Sustainable Energy Reviews, 78: 15-22, (2017).
  • Chávez-Urbiola E.A., Vorobiev Y.V., Bulat L.P. “Solar hybrid systems with thermoelectric generators”, Solar Energy, 86: 369-378, (2012).
  • Singh R., Tundee S., Akbarzadeh A. “Electric power generation from solar pond using combined thermosyphon and thermoelectric modules”, Solar Energy, 85: 371-378, (2011).
  • Deasy M.J., Baudin N., O'Shaughnessy S.M., Robinson A.J. “Simulation-driven design of a passive liquid cooling system for a thermoelectric generator”, Applied Energy, 205: 499-510, (2017).
  • TECTEG, https://thermoelectric-generator.com/wp-content/uploads/2014/04/SpecTEG1-1263-4.3Thermoelectric-generator1.pdf
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Engin Özbaş 0000-0003-4922-7890

Publication Date December 1, 2020
Submission Date August 29, 2019
Published in Issue Year 2020 Volume: 23 Issue: 4

Cite

APA Özbaş, E. (2020). Experimental Investigation of Passive Water Cooling in Solar Heating Thermoelectric Generator. Politeknik Dergisi, 23(4), 1231-1236. https://doi.org/10.2339/politeknik.613095
AMA Özbaş E. Experimental Investigation of Passive Water Cooling in Solar Heating Thermoelectric Generator. Politeknik Dergisi. December 2020;23(4):1231-1236. doi:10.2339/politeknik.613095
Chicago Özbaş, Engin. “Experimental Investigation of Passive Water Cooling in Solar Heating Thermoelectric Generator”. Politeknik Dergisi 23, no. 4 (December 2020): 1231-36. https://doi.org/10.2339/politeknik.613095.
EndNote Özbaş E (December 1, 2020) Experimental Investigation of Passive Water Cooling in Solar Heating Thermoelectric Generator. Politeknik Dergisi 23 4 1231–1236.
IEEE E. Özbaş, “Experimental Investigation of Passive Water Cooling in Solar Heating Thermoelectric Generator”, Politeknik Dergisi, vol. 23, no. 4, pp. 1231–1236, 2020, doi: 10.2339/politeknik.613095.
ISNAD Özbaş, Engin. “Experimental Investigation of Passive Water Cooling in Solar Heating Thermoelectric Generator”. Politeknik Dergisi 23/4 (December 2020), 1231-1236. https://doi.org/10.2339/politeknik.613095.
JAMA Özbaş E. Experimental Investigation of Passive Water Cooling in Solar Heating Thermoelectric Generator. Politeknik Dergisi. 2020;23:1231–1236.
MLA Özbaş, Engin. “Experimental Investigation of Passive Water Cooling in Solar Heating Thermoelectric Generator”. Politeknik Dergisi, vol. 23, no. 4, 2020, pp. 1231-6, doi:10.2339/politeknik.613095.
Vancouver Özbaş E. Experimental Investigation of Passive Water Cooling in Solar Heating Thermoelectric Generator. Politeknik Dergisi. 2020;23(4):1231-6.