Research Article
BibTex RIS Cite

Evaluation of Polycaprolacton/Halloysite Films Containing Boric Acid, Citric Acid, Ascorbic Acid as Packaging Materials

Year 2021, Volume: 24 Issue: 1, 315 - 321, 01.03.2021
https://doi.org/10.2339/politeknik.709248

Abstract

The using of biopolymers as packaging materials is limited because they have low mechanical, thermal and barrier properties. This limitation can be eliminated by adding fillers to the biopolymers to prepare bionanocomposites. In this study, PCL/HAL films were prepared by solvent casting method by mixing 0.5% (w/v) and halloysite (HAL) to pure PCL. Structural (ATR-FTIR and XRD), thermal (TGA) and mechanical (tensile strength, hardness) analysis were performed on these films. Tmelting, hardness and tensile strength of PCL/HAL films increased compared to pure PCL films. To investigate the antimicrobial effect of PCL films, boric acid, citric acid and ascorbic acid (% 0.25) were added to PCL/HAL films. The antimicrobial effect of these films was investigated against gram positive Staphylococcus aureus 29213 and gram negative Escheria coli 35218 bacteria. As a result of the antimicrobial activity test, it was observed that the amount of boric acid, citric acid and ascorbic acid added to the films did not show sufficient inhibition effect. As a result, the addition of HAL to pure PCL caused an increase in the mechanical properties of the films. Therefore it is thought to have potential to be used as packaging material.

References

  • [1] Yildirim S., Rocker B., Kvalvag Pettersen M., Nilsen-Nygaard J., Ayhan J., Rutkaite R., Radusin T., Suminska P., Marcos B., Coma V., “Active Packaging Applications for Food”, Comprehensive Reviews in Food Science and Food Safety, 17:165-199, (2018).
  • [2] Ribeiro-Santos S., Andrade M., Ramos de Melo N., Sanches-Silva A., “Use of essential oils in active food packaging: Recent advances and future trends”, Trends in Food Science & Technology, 61:132-140, (2017).
  • [3] Xie J., Hung Y.C., “UV-A activated TiO2 embedded biodegradable polymer film for antimicrobial food packaging application”, LWT - Food Science and Technology, 96:307–314, (2018).
  • [4] Shankar S., Kasapis S., Rhim J.W., “Alginate-based nanocomposite films reinforced with halloysite nanotubes functionalized by alkali treatment and zinc oxide nanoparticles”, International Journal of Biological Macromolecules, 118:1824–1832, (2018).
  • [5] Mihindukulasurıya S.D.F., Lim L.T., “Nanotechnology development in food packaging: A review”, Trends in Food Science & Technology, 40:149-167, (2014).
  • [6] Lahcini M., Elhakioui S., Szopinski D., Neuer B., El Kadib A., Scheliga F., Raihane M., Baltá Calleja F.J., Luinstra G.A., “Harnessing synergies in tin-clay catalyst for the preparation of poly(e-caprolactone)/ halloysite nanocomposites”, European Polymer Journal, 81: 1–11, (2016).
  • [7] Ghezzi L., Spepi A., Agnolucci M., Cristani C., Giovannettib M., Tinéa M.R., Ducea C., “Kinetics of release and antibacterial activity of salicylic acid loaded into halloysite nanotubes”, Applied Clay Science, 160:88–94, (2018).
  • [8] Gorrasi G., Senatore V., Vigliotta G., Belviso S., Pucciariello R., “PET– halloysite nanotubes composites for packaging application: Preparation, characterization and analysis of physical properties”, European Polymer Journal, 61:145–156, (2014).
  • [9] Oliyaei N., Moosavi-Nasab M., Tamaddon A.M., Fazaeli M., “Preparation and characterization of porous starch reinforced with halloysite nanotube by solvent exchange method”, International Journal of Biological Macromolecules, 123:682–690, (2019).
  • [10] Devi N., Dutta J., “Development and in vitro characterization of chitosan/starch/ halloysite nanotubes ternary nanocomposite films”, International Journal of Biological Macromolecules, 127: 222–231, (2019).
  • [11] Torres E., Fombuenaa V., Vallés-Lluch A., Ellingham T., “Improvement of mechanical and biological properties of Polycaprolactone loaded with Hydroxyapatite and Halloysite nanotubes”, MaterialsScience and Engineering C, 75:418–424, (2017).
  • [12] Lee K.S., Chang Y.W., “Thermal, Mechanical, and Rheological Properties of Poly(e-caprolactone)/Halloysite Nanotube Nanocomposites”, Journal of Applied Polymer, Science, 2807-2816, (2013).
  • [13] Wang L.F., Rhim J-W., “Functionalization of halloysite nanotubes for the preparation of carboxymethyl cellulose-based nanocomposite films”, Applied Clay Science, 150:138–146, (2017).
  • [14] Sadegh-Hassani F., Nafchi M.A., “Preparation and characterization of bionanocomposite films based on potato starch/halloysite nanoclay”, International Journal of Biological Macromolecules, 67:458-462, (2014).
  • [15] Meira S.M.M., Zehetmeyer G., Werner J.O., Brandelli A., “A novel active packaging material based on starch-halloysite nanocomposites incorporating antimicrobial peptides”, Food Hydrocolloids, 63:561-570, (2017).
  • [16] Akarca G., Gök V., Tomar O., “Gıda Muhafasında Kullanılan Bazı Doğal Antimikrobiyaller”, Kocatepe Veterinary Journal, 7(1): 58-68, (2014).
  • [17] Şengün İ.Y., Öztürk B., “Bitkisel Kaynaklı Bazı Doğal Antimikrobiyaller”, Anadolu University Journal of Science and Techno, logy C- Life Sciences and Biotechnology, 7 (2):256-276, (2018).
  • [18] Stevanovic M., Brac I., Milenkovic M., Filipovic N., Nunic J., Filipic M., Uskokovic D.P., “Multifunctional PLGA particles containing poly(L-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity”, Acta Biomaterialia, 10:151–162, (2014).
  • [19] Wu H., Lei Y., Lu J., Zhu R., Xiao D., Jiao C., Xia R., Zhang Z., Shen G., Liu Y., Li S., Li M., “Effect of citric acid induced crosslinking on the structure and properties of potato starch/chitosan composite films”, Food Hydrocolloids, 97:105208, (2019).
  • [20] Uranga J., Puertas A.I., Etxabide A., Duenas M.T., Guerrero P., de la Caba K., “Citric acid-incorporated fish gelatin/chitosan composite films”, Food Hydrocolloids, 86:95-103, (2019).
  • [21] Dharmalingam K., Anandalakshmi R., “Fabrication, characterization and drug loading efficiency of citric acid crosslinked NaCMC-HPMC hydrogel films for wound healing drug delivery applications”, International Journal of Biological Macromolecules, 134: 815–829, (2019).
  • [22] Azevedo V.M., Dias M.V., Elias H.H.S., Fukushima K.L., Silva E.K., Carneiro J.D.S., Soares N.F.F., Borges S.V., “Effect of whey protein isolate films incorporated with montmorillonite and citric acid on the preservation of fresh-cut apples”, Food Research International, 107: 306–313, (2018).
  • [23] Saita K., Nagaoka S., Shirosaki T., Horikawa M., Matsuda S., Ihara H., “Preparation and characterization of dispersible chitosan particles with borate crosslinking and their antimicrobial and antifungal activity”, Carbohydrate Research, 349: 52–58, (2012).
  • [24] Reshmi C.R., Suja P.S., Manaf O., Sanu P.P., Sujith A., “Nanochitosan enriched poly ε-caprolactone electrospun wound dressing membranes: A fine tuning of physicochemical properties, hemocompatibility and curcumin release profile”, International Journal of Biological Macromolecules, 108:1261-1272, (2018).
  • [25] Rescek A., Krehula L.K., Katancic Z., Hrnjak-Murgic Z., “Active bilayer PE/PCL films for food packaging modified with zinc oxide and casein”, Croatica Chemica Acta, 88(4):461-473, (2015).
  • [26] Pavliňáková V., Fohlerová Z., Pavliňák D., Khunová D., Vojtová L., “Effect of halloysite nanotube structure on physical, chemical, structural and biological properties of elastic polycaprolactone/gelatin nanofibers for wound healing applications”, Materials Science & Engineering C, 91: 94–102, (2018).
  • [27] Panicker C.Y., Varghese, H.T., Philip D., “FT-IR, FT-Raman and SERS spectra of vitamin C”, Spectrochimica Acta Part A, 65:802-804, (2006).
  • [28] Peak D., Luther G.W., Sparks D.L., “AT-FTIR spectroscopic studies of boric acid adsorption on hydrous ferric oxide”, Geochimica et Cosmochimica Acta, 67:2551-2560, (2003).
  • [29] Ramirez D.O.S., Carletto R.A., Toretti C., Giachet F.T., Varesano A., Vineis C., “Wool keratin film plasticized by citric acid for food packaging”, Food Packaging and Shelp Life, 12:100-106, (2017).
  • [30] Jing X., Mi H.-Y., Huang H.-X., Turng L.-S., “Shape memory thermoplastic polyurethane (TPU)/poly (ε-caprolactone)(PCL) blends as self-k notting sutures”, Journal of the Mechanical Behavior of Biomedical Materials, 64:94-103, (2016).
  • [31] Babu S.S., Kalarikkal N., Thomas S., Radhakrishnan E., “Enhanced antimicrobial performance of cloisite 30B/poly (ε-caprolactone) over cloisite 30B/poly (l-lactic acid) as evidenced by structural features”, Applied Clay Science, 153:198-204, (2018).
  • [32] Zhang A.B., Pan L., Zhang H.Y., Liu S.T., Ye Y., Xia M.S., Chen X.G., “Effects of acid treatment on the physico-chemical and pore characteristics of halloysite”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 396:182-188, (2012).
  • [33] Söğüt E., Seydim A.C., “Development of chitosan and polycaprolactone based trilayer biocomposite films for food packaging applications”, Journal of Polytechnic, DOI: 10.2339/politeknik.628222 (2020)(Baskıda).
  • [34] Benhacine F., Hadj-Hamou A., Habi A., “Development of long-term antimicrobial poly (ε-caprolacton)/silver exchanged montmorillonite nanocomposite films with silver ion release property for active packaging use”, Polymer Bulletin, 73:1207-1227, (2016).
  • [35] Luduena L.N., Kenny J.M., Vazquez A., Alvarez V.A., “Effect of clay organic modifier on the final performance of PCL/clay nanocomposites”, Materials Science and Engineering A., 529:215-223, (2011).
  • [36] Gyawali R., Zimmerman T., Aljaloud S.O., Ibrahim S.A., “Bactericidal activity of copper-ascorbic acid mixture against Staphylococcus aureus spp”, Food Control, 111:107062, (2020).
  • [37] Firouzabadi B.F., Noori M., Edalatpanah Y., Mirhosseini M., “ZnO nanoparticle suspensions containing citric acid as antimicrobial to control Listeria monocytogenes, Escherichia coli, Staphylococcus aureus and Bacillus cereus in mango juice”, Food Control, 42:310-314, (2014).

Borik Asit, Sitrik Asit, Askorbik Asit İçeren Polikaprolakton/Halloysit Filmlerin Ambalaj Malzemesi Olarak Değerlendirilmesi

Year 2021, Volume: 24 Issue: 1, 315 - 321, 01.03.2021
https://doi.org/10.2339/politeknik.709248

Abstract

Biyopolimerlerin ambalaj malzemesi olarak kullanımı düşük mekanik, termal ve bariyer özelliklere sahip olması nedeniyle kısıtlıdır. Bu kısıtlama biyopolimerlere dolgu malzemeleri eklenerek giderilebilmektedir. Bu çalışmada saf polikaprolakton (PCL) ve % 0,5 w/v oranında halloysit (HAL) karıştırılarak, PCL/HAL filmler çözelti döküm yöntemiyle hazırlanmıştır. Bu filmlere yapısal (ATR-FTIR ve XRD), termal (TGA) ve mekanik (çekme-kopma, sertlik) testler yapılmıştır. PCL/HAL filmlerin Terime sıcaklığı, sertlik ve gerilme dayanımlarında saf PCL filmlere göre artış gözlenmiştir. PCL filmlerin antimikrobiyal etkisini incelemek için PCL/HAL filmlere borik asit, sitrik asit ve askorbik asit (% 0,25) eklenmiştir. Bu filmlerin antimikrobiyal etkisi gram pozitif Staphylococcus aureus 29213 ve gram negatif Escheria coli 35218 bakterilerine karşı incelenmiştir. Antimikrobiyal aktivite deneyi sonucunda filmlere eklenen borik asit, sitrik asit ve askorbik asit miktarının yeterli inhibisyon etkisi gösteremediği gözlenmiştir. Sonuç olarak saf PCL’ye HAL eklenmesi filmlerin mekanik özelliklerinde artışa sebep olmuştur ve bu nedenle ambalaj malzemesi olarak kullanılabilir potansiyele sahip olduğu düşünülmektedir.  

References

  • [1] Yildirim S., Rocker B., Kvalvag Pettersen M., Nilsen-Nygaard J., Ayhan J., Rutkaite R., Radusin T., Suminska P., Marcos B., Coma V., “Active Packaging Applications for Food”, Comprehensive Reviews in Food Science and Food Safety, 17:165-199, (2018).
  • [2] Ribeiro-Santos S., Andrade M., Ramos de Melo N., Sanches-Silva A., “Use of essential oils in active food packaging: Recent advances and future trends”, Trends in Food Science & Technology, 61:132-140, (2017).
  • [3] Xie J., Hung Y.C., “UV-A activated TiO2 embedded biodegradable polymer film for antimicrobial food packaging application”, LWT - Food Science and Technology, 96:307–314, (2018).
  • [4] Shankar S., Kasapis S., Rhim J.W., “Alginate-based nanocomposite films reinforced with halloysite nanotubes functionalized by alkali treatment and zinc oxide nanoparticles”, International Journal of Biological Macromolecules, 118:1824–1832, (2018).
  • [5] Mihindukulasurıya S.D.F., Lim L.T., “Nanotechnology development in food packaging: A review”, Trends in Food Science & Technology, 40:149-167, (2014).
  • [6] Lahcini M., Elhakioui S., Szopinski D., Neuer B., El Kadib A., Scheliga F., Raihane M., Baltá Calleja F.J., Luinstra G.A., “Harnessing synergies in tin-clay catalyst for the preparation of poly(e-caprolactone)/ halloysite nanocomposites”, European Polymer Journal, 81: 1–11, (2016).
  • [7] Ghezzi L., Spepi A., Agnolucci M., Cristani C., Giovannettib M., Tinéa M.R., Ducea C., “Kinetics of release and antibacterial activity of salicylic acid loaded into halloysite nanotubes”, Applied Clay Science, 160:88–94, (2018).
  • [8] Gorrasi G., Senatore V., Vigliotta G., Belviso S., Pucciariello R., “PET– halloysite nanotubes composites for packaging application: Preparation, characterization and analysis of physical properties”, European Polymer Journal, 61:145–156, (2014).
  • [9] Oliyaei N., Moosavi-Nasab M., Tamaddon A.M., Fazaeli M., “Preparation and characterization of porous starch reinforced with halloysite nanotube by solvent exchange method”, International Journal of Biological Macromolecules, 123:682–690, (2019).
  • [10] Devi N., Dutta J., “Development and in vitro characterization of chitosan/starch/ halloysite nanotubes ternary nanocomposite films”, International Journal of Biological Macromolecules, 127: 222–231, (2019).
  • [11] Torres E., Fombuenaa V., Vallés-Lluch A., Ellingham T., “Improvement of mechanical and biological properties of Polycaprolactone loaded with Hydroxyapatite and Halloysite nanotubes”, MaterialsScience and Engineering C, 75:418–424, (2017).
  • [12] Lee K.S., Chang Y.W., “Thermal, Mechanical, and Rheological Properties of Poly(e-caprolactone)/Halloysite Nanotube Nanocomposites”, Journal of Applied Polymer, Science, 2807-2816, (2013).
  • [13] Wang L.F., Rhim J-W., “Functionalization of halloysite nanotubes for the preparation of carboxymethyl cellulose-based nanocomposite films”, Applied Clay Science, 150:138–146, (2017).
  • [14] Sadegh-Hassani F., Nafchi M.A., “Preparation and characterization of bionanocomposite films based on potato starch/halloysite nanoclay”, International Journal of Biological Macromolecules, 67:458-462, (2014).
  • [15] Meira S.M.M., Zehetmeyer G., Werner J.O., Brandelli A., “A novel active packaging material based on starch-halloysite nanocomposites incorporating antimicrobial peptides”, Food Hydrocolloids, 63:561-570, (2017).
  • [16] Akarca G., Gök V., Tomar O., “Gıda Muhafasında Kullanılan Bazı Doğal Antimikrobiyaller”, Kocatepe Veterinary Journal, 7(1): 58-68, (2014).
  • [17] Şengün İ.Y., Öztürk B., “Bitkisel Kaynaklı Bazı Doğal Antimikrobiyaller”, Anadolu University Journal of Science and Techno, logy C- Life Sciences and Biotechnology, 7 (2):256-276, (2018).
  • [18] Stevanovic M., Brac I., Milenkovic M., Filipovic N., Nunic J., Filipic M., Uskokovic D.P., “Multifunctional PLGA particles containing poly(L-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity”, Acta Biomaterialia, 10:151–162, (2014).
  • [19] Wu H., Lei Y., Lu J., Zhu R., Xiao D., Jiao C., Xia R., Zhang Z., Shen G., Liu Y., Li S., Li M., “Effect of citric acid induced crosslinking on the structure and properties of potato starch/chitosan composite films”, Food Hydrocolloids, 97:105208, (2019).
  • [20] Uranga J., Puertas A.I., Etxabide A., Duenas M.T., Guerrero P., de la Caba K., “Citric acid-incorporated fish gelatin/chitosan composite films”, Food Hydrocolloids, 86:95-103, (2019).
  • [21] Dharmalingam K., Anandalakshmi R., “Fabrication, characterization and drug loading efficiency of citric acid crosslinked NaCMC-HPMC hydrogel films for wound healing drug delivery applications”, International Journal of Biological Macromolecules, 134: 815–829, (2019).
  • [22] Azevedo V.M., Dias M.V., Elias H.H.S., Fukushima K.L., Silva E.K., Carneiro J.D.S., Soares N.F.F., Borges S.V., “Effect of whey protein isolate films incorporated with montmorillonite and citric acid on the preservation of fresh-cut apples”, Food Research International, 107: 306–313, (2018).
  • [23] Saita K., Nagaoka S., Shirosaki T., Horikawa M., Matsuda S., Ihara H., “Preparation and characterization of dispersible chitosan particles with borate crosslinking and their antimicrobial and antifungal activity”, Carbohydrate Research, 349: 52–58, (2012).
  • [24] Reshmi C.R., Suja P.S., Manaf O., Sanu P.P., Sujith A., “Nanochitosan enriched poly ε-caprolactone electrospun wound dressing membranes: A fine tuning of physicochemical properties, hemocompatibility and curcumin release profile”, International Journal of Biological Macromolecules, 108:1261-1272, (2018).
  • [25] Rescek A., Krehula L.K., Katancic Z., Hrnjak-Murgic Z., “Active bilayer PE/PCL films for food packaging modified with zinc oxide and casein”, Croatica Chemica Acta, 88(4):461-473, (2015).
  • [26] Pavliňáková V., Fohlerová Z., Pavliňák D., Khunová D., Vojtová L., “Effect of halloysite nanotube structure on physical, chemical, structural and biological properties of elastic polycaprolactone/gelatin nanofibers for wound healing applications”, Materials Science & Engineering C, 91: 94–102, (2018).
  • [27] Panicker C.Y., Varghese, H.T., Philip D., “FT-IR, FT-Raman and SERS spectra of vitamin C”, Spectrochimica Acta Part A, 65:802-804, (2006).
  • [28] Peak D., Luther G.W., Sparks D.L., “AT-FTIR spectroscopic studies of boric acid adsorption on hydrous ferric oxide”, Geochimica et Cosmochimica Acta, 67:2551-2560, (2003).
  • [29] Ramirez D.O.S., Carletto R.A., Toretti C., Giachet F.T., Varesano A., Vineis C., “Wool keratin film plasticized by citric acid for food packaging”, Food Packaging and Shelp Life, 12:100-106, (2017).
  • [30] Jing X., Mi H.-Y., Huang H.-X., Turng L.-S., “Shape memory thermoplastic polyurethane (TPU)/poly (ε-caprolactone)(PCL) blends as self-k notting sutures”, Journal of the Mechanical Behavior of Biomedical Materials, 64:94-103, (2016).
  • [31] Babu S.S., Kalarikkal N., Thomas S., Radhakrishnan E., “Enhanced antimicrobial performance of cloisite 30B/poly (ε-caprolactone) over cloisite 30B/poly (l-lactic acid) as evidenced by structural features”, Applied Clay Science, 153:198-204, (2018).
  • [32] Zhang A.B., Pan L., Zhang H.Y., Liu S.T., Ye Y., Xia M.S., Chen X.G., “Effects of acid treatment on the physico-chemical and pore characteristics of halloysite”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 396:182-188, (2012).
  • [33] Söğüt E., Seydim A.C., “Development of chitosan and polycaprolactone based trilayer biocomposite films for food packaging applications”, Journal of Polytechnic, DOI: 10.2339/politeknik.628222 (2020)(Baskıda).
  • [34] Benhacine F., Hadj-Hamou A., Habi A., “Development of long-term antimicrobial poly (ε-caprolacton)/silver exchanged montmorillonite nanocomposite films with silver ion release property for active packaging use”, Polymer Bulletin, 73:1207-1227, (2016).
  • [35] Luduena L.N., Kenny J.M., Vazquez A., Alvarez V.A., “Effect of clay organic modifier on the final performance of PCL/clay nanocomposites”, Materials Science and Engineering A., 529:215-223, (2011).
  • [36] Gyawali R., Zimmerman T., Aljaloud S.O., Ibrahim S.A., “Bactericidal activity of copper-ascorbic acid mixture against Staphylococcus aureus spp”, Food Control, 111:107062, (2020).
  • [37] Firouzabadi B.F., Noori M., Edalatpanah Y., Mirhosseini M., “ZnO nanoparticle suspensions containing citric acid as antimicrobial to control Listeria monocytogenes, Escherichia coli, Staphylococcus aureus and Bacillus cereus in mango juice”, Food Control, 42:310-314, (2014).
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Müjgan Okur 0000-0002-1533-9408

Publication Date March 1, 2021
Submission Date March 25, 2020
Published in Issue Year 2021 Volume: 24 Issue: 1

Cite

APA Okur, M. (2021). Borik Asit, Sitrik Asit, Askorbik Asit İçeren Polikaprolakton/Halloysit Filmlerin Ambalaj Malzemesi Olarak Değerlendirilmesi. Politeknik Dergisi, 24(1), 315-321. https://doi.org/10.2339/politeknik.709248
AMA Okur M. Borik Asit, Sitrik Asit, Askorbik Asit İçeren Polikaprolakton/Halloysit Filmlerin Ambalaj Malzemesi Olarak Değerlendirilmesi. Politeknik Dergisi. March 2021;24(1):315-321. doi:10.2339/politeknik.709248
Chicago Okur, Müjgan. “Borik Asit, Sitrik Asit, Askorbik Asit İçeren Polikaprolakton/Halloysit Filmlerin Ambalaj Malzemesi Olarak Değerlendirilmesi”. Politeknik Dergisi 24, no. 1 (March 2021): 315-21. https://doi.org/10.2339/politeknik.709248.
EndNote Okur M (March 1, 2021) Borik Asit, Sitrik Asit, Askorbik Asit İçeren Polikaprolakton/Halloysit Filmlerin Ambalaj Malzemesi Olarak Değerlendirilmesi. Politeknik Dergisi 24 1 315–321.
IEEE M. Okur, “Borik Asit, Sitrik Asit, Askorbik Asit İçeren Polikaprolakton/Halloysit Filmlerin Ambalaj Malzemesi Olarak Değerlendirilmesi”, Politeknik Dergisi, vol. 24, no. 1, pp. 315–321, 2021, doi: 10.2339/politeknik.709248.
ISNAD Okur, Müjgan. “Borik Asit, Sitrik Asit, Askorbik Asit İçeren Polikaprolakton/Halloysit Filmlerin Ambalaj Malzemesi Olarak Değerlendirilmesi”. Politeknik Dergisi 24/1 (March 2021), 315-321. https://doi.org/10.2339/politeknik.709248.
JAMA Okur M. Borik Asit, Sitrik Asit, Askorbik Asit İçeren Polikaprolakton/Halloysit Filmlerin Ambalaj Malzemesi Olarak Değerlendirilmesi. Politeknik Dergisi. 2021;24:315–321.
MLA Okur, Müjgan. “Borik Asit, Sitrik Asit, Askorbik Asit İçeren Polikaprolakton/Halloysit Filmlerin Ambalaj Malzemesi Olarak Değerlendirilmesi”. Politeknik Dergisi, vol. 24, no. 1, 2021, pp. 315-21, doi:10.2339/politeknik.709248.
Vancouver Okur M. Borik Asit, Sitrik Asit, Askorbik Asit İçeren Polikaprolakton/Halloysit Filmlerin Ambalaj Malzemesi Olarak Değerlendirilmesi. Politeknik Dergisi. 2021;24(1):315-21.