Research Article
BibTex RIS Cite

Effect of Hydrogen Generation of The Neutronic Performance in a Laser Inertial Fusion Reactor (LIFE) Fuelled Uranium

Year 2021, Volume: 24 Issue: 2, 609 - 617, 01.06.2021
https://doi.org/10.2339/politeknik.723884

Abstract

In this study, a neutronic analysis of the Laser Inertial Fusion Reactor (LIFE) fuelled uranium and this reactor’s hydrogen production potential were investigated. Neutronic calculations were performed with the help of MCNP nuclear code. As a nuclear fuel, 10 vol% uranium dioxide and as a coolant, 90 vol% natural lithium were used. In neutronic calculations, tritium breeding ratio (TBR), energy multiplication factor (M), fuel burnup (BU) and fissile fuel changes were obtained. In addition, hydrogen production potential was examined by high temperature electrolysis (HTE) method and sulfur-iodine (S-I) cycled thermochemical method of the reactor. As a consequence of the calculations, a good neutronic performance was obtained in the reactor and also it was observed that HTE method, which is the one of the hydrogen production methods, produced more hydrogen by using less power than the S-I method.  

References

  • [1] Veziroğlu T. N., Şahin S., “21st century’s energy: Hydrogen energy system”, Energy Conversion and Management, 49: 1820-1831, (2008).
  • [2] Berwald D.H. et al., “Fission suppressed hybrid reactor fusion breeder”, Lawrance Livermore National Laboratory, UCID-19327.2, (1982).
  • [3] Greenspan E., “Fusion-Fission hybrid reactors”, Advences in Science and Technology, J. LEWINS and M. BECKER, Eds., Plenum Press, 16,289, (1984).
  • [4] Lee J.D. et al, “Feasibilty study of a fission suppressed tandem-mirror hybrid reactor fusion breeder” Lawrance Livermore National Laboratory, CA, UCID-19327, (1982).
  • [5] Moir R.W., Shaw H.F., Caro A., Kaufman L., Latkowski J.F., Powers J., Turchi P.E.A., “Molten salt fuel version of laser inertial fusion fission energy (LIFE)” Fusion Science and Technology, 56(2): 632-640, (2009).
  • [6] Kramer K.J. et al., “Parameter study of the LIFE engine nuclear design”, Energy Conversion and Management, 51(9): 1744-1750, (2009).
  • [7] Kramer K.J., Latkowski J.F., Abbott R.P., Boyd J.K., Powers J.J., Seifried J.E., “Neutron transport and nuclear burnup analysis for the laser inertial confinement fusion- fission energy (LIFE) engine”, Fusion Science and Technology, 56(2): 625-631, (2009).
  • [8] Şahin S., Şahin H.M., Acır A., “Utilization of reactor grade plutonium as energy multiplier in the LIFE engine” Fusion Science and Technology, 61(1): 216-221, (2012).
  • [9] Şahin S., Khan M.J., Ahmed R., “Fissile fuel breeding an actinide transmutation in the LIFE engine” Fusion Engineering and Design, 86(2-3): 227-237, (2011).
  • [10] Şahin S., Şahin H.M., Acır A., “LIFE hybrid reactor as reactor grade plutonium burner” Energy Conversion and Management, 63: 44-50, (2012).
  • [11] Acır A., “Neutronic analysis of the laser inertial confinement fusion-fission energy (LIFE) engine using various thorium molten salts” Journal of Fusion Energy, 32(6): 634-641, (2013).
  • [12] Aktı S., (Supervisor: Prof. Dr. Adem Acır), “Investigation of hydrogen production potential of LIFE fusion reactor”, M.Sc Thesis, Gazi University Graduate School of Natural and Applied Sciences, February (2019).
  • [13] Acır A., Aktı S., “LIFE füzyon reaktöründe yüksek sıcaklıkta elektroliz yöntemi ile hidrojen üretimi”, Gazi Mühendislik Bilimleri Dergisi, 5(1): 1-8, (2019).
  • [14] Genç G., “ Hydrogen production potential of APEX fusion transmuter fueled minor actinide fluoride", International Journal of Hydrogen Energy, 35(19): 10190-10201, (2010).
  • [15] Özışık G., Demir N., Übeyli M., Yapıcı H., “Hydrogen production via water splitting process in a molten salt fuel breeder” International Journal of Hydrogen Energy, 35: 7357-7368, (2010).
  • [16] Demir N., “Hyrogen production via steam-methane reforming in a SOMBRERO fusion breeder with ceramic fuel particles”, International Journal of Hydrogen Energy, 38(2): 853-860 (2013).
  • [17] Acır A., Aktı S., “Investigation of hydrogen produciton potential of the LASER inertial confinement fusion fission energy (LIFE) engine”, International Journal of Hydrogen Energy, 44(45): 24867-24879, (2019).
  • [18] Yıldız B., Kazimi M.S., “Efficiency of the hydrogen production systems using alternative nuclear energy technologies”, Hydrogen Energy, 31: 77-92, (2006).
  • [19] Khalid F., Dinçer İ., Rosen M.A., “Model development analysis of a novel high-temperature electrolyser for gas phase electrolysis of hydrogen chloride for hydrogen production”, Hydrogen Energy, 43(19): 9112-9118, (2018).
  • [20] Dawood F., Anda M., Shafiullah G.M., “Hydrogen production for energy: An overview”, Hydrogen Energy, 45: 3847-3869, (2020).
  • [21] Orhan M.F., Dinçer İ., Rosen M.A., “Investigation of an integrated hydrogen produciton system based on nuclear and renewable energy sources: a new approach for sustainable hydrogen production via copper-chlorine thermochemical cycles”, International Journal of Energy Research, 36: 1388-1394, (2012).
  • [22] El-Emam R.S., Dinçer İ., “Nuclear-assisted hydrogen production” Springer, Editor: Meyers R., Encylopedia of Sustainability Science and Technology, (2018).
  • [23] Briesmeister J.F., “A General Monte Carlo N-Particle Transport Code, Version 4B, LA-13709M”, Los Alamos National Laboratory, MCNP, (2000).
  • [24] Lanchi M., Ceroli A., Liberatore R., Marrelli L., Maschietti M., Spandoni A., Tarquini P., “S-I thermochemical cycle: A thermodynamic analysis of the HI-H2O-I2 system and design of the HIx decomposition section”, International Journal of Hydrogen Energy, 34(5): 2121-2132, (2009).
  • [25] Fujiwara S., Kasai S., Yamauchi H., Yamada K., Makino S., Matsunaga K., Hoashi E., “Hydrogen production by high temperature electrolysis wih nuclear reactor”, Progress in Nuclear Energy, 50(2-6), 422-426, (2008).
  • [26] Bakır G., Genç G., Yapıcı H., “Study of a conceptual gas cooled accelerator driven system loaded with thorium dioxide mixed with transuranic dioxides discharged from PWR-MOX spent fuel in TRISO particles”, Nuclear Technology and Radiation Protection, 31(3): 197-206, (2016).
  • [27] Bakır G., Genç G., Yapıcı H., “Time-dependent neutronic analysis of a power-flattened gas cooled accelerator driven system fueled with thorium, uranium, plutonium and curium dioxides TRISO particles”, Science and Technology of Nuclear Installations, 1-11, (2016).
  • [28] Şahin S., Al-Eshakh M., “Fission power flattening in hybrid blankets using mixed fuel”, Fusion Technology, 12(3): 395-408, (1987).
  • [29] Şahin S., “Power flattening in a catalyzed (D,D) fusion driven hybrid blanket using nuclear waste actinides”, Nuclear Technology, 92: 93-105, (1990).

Uranyum Yakıtlı Bir Lazer Sürücülü Füzyon Reaktöründe (LIFE) Nötronik Performansın Hidrojen Üretimine Etkisi

Year 2021, Volume: 24 Issue: 2, 609 - 617, 01.06.2021
https://doi.org/10.2339/politeknik.723884

Abstract

Bu çalışmada, uranyum yakıtlı bir lazer sürücülü füzyon reaktöründe (LIFE) nötronik analiz ve bu reaktörün hidrojen üretim potansiyeli araştırılmıştır. Nötronik hesaplamalar MCNP nükleer kodu yardımıyla yapılmıştır. Nükleer yakıt olarak %10 uranyum dioksit (UO2), soğutucu olarak ise %90 natural lityum kullanılmıştır. Nötronik hesaplamalarda, trityum üretim oranı (TBR), enerji çoğaltım faktörü (M), yakıt yanma oranı (BU) ve fisil yakıt değişimleri elde edilmiştir. Ek olarak, reaktörün yüksek sıcaklıkta elektroliz (HTE) yöntemi ve kükürt-iyot (S-I) döngülü termokimyasal yöntem ile hidrojen üretim potansiyeli araştırılmıştır. Yapılan hesaplamalar sonucunda, reaktörde iyi bir nötronik performans elde edilmiş ve ayrıca hidrojen üretim metotlarından HTE metodunun S-I metoduna göre daha az güç kullanarak daha fazla hidrojen ürettiği gözlemlenmiştir. 

References

  • [1] Veziroğlu T. N., Şahin S., “21st century’s energy: Hydrogen energy system”, Energy Conversion and Management, 49: 1820-1831, (2008).
  • [2] Berwald D.H. et al., “Fission suppressed hybrid reactor fusion breeder”, Lawrance Livermore National Laboratory, UCID-19327.2, (1982).
  • [3] Greenspan E., “Fusion-Fission hybrid reactors”, Advences in Science and Technology, J. LEWINS and M. BECKER, Eds., Plenum Press, 16,289, (1984).
  • [4] Lee J.D. et al, “Feasibilty study of a fission suppressed tandem-mirror hybrid reactor fusion breeder” Lawrance Livermore National Laboratory, CA, UCID-19327, (1982).
  • [5] Moir R.W., Shaw H.F., Caro A., Kaufman L., Latkowski J.F., Powers J., Turchi P.E.A., “Molten salt fuel version of laser inertial fusion fission energy (LIFE)” Fusion Science and Technology, 56(2): 632-640, (2009).
  • [6] Kramer K.J. et al., “Parameter study of the LIFE engine nuclear design”, Energy Conversion and Management, 51(9): 1744-1750, (2009).
  • [7] Kramer K.J., Latkowski J.F., Abbott R.P., Boyd J.K., Powers J.J., Seifried J.E., “Neutron transport and nuclear burnup analysis for the laser inertial confinement fusion- fission energy (LIFE) engine”, Fusion Science and Technology, 56(2): 625-631, (2009).
  • [8] Şahin S., Şahin H.M., Acır A., “Utilization of reactor grade plutonium as energy multiplier in the LIFE engine” Fusion Science and Technology, 61(1): 216-221, (2012).
  • [9] Şahin S., Khan M.J., Ahmed R., “Fissile fuel breeding an actinide transmutation in the LIFE engine” Fusion Engineering and Design, 86(2-3): 227-237, (2011).
  • [10] Şahin S., Şahin H.M., Acır A., “LIFE hybrid reactor as reactor grade plutonium burner” Energy Conversion and Management, 63: 44-50, (2012).
  • [11] Acır A., “Neutronic analysis of the laser inertial confinement fusion-fission energy (LIFE) engine using various thorium molten salts” Journal of Fusion Energy, 32(6): 634-641, (2013).
  • [12] Aktı S., (Supervisor: Prof. Dr. Adem Acır), “Investigation of hydrogen production potential of LIFE fusion reactor”, M.Sc Thesis, Gazi University Graduate School of Natural and Applied Sciences, February (2019).
  • [13] Acır A., Aktı S., “LIFE füzyon reaktöründe yüksek sıcaklıkta elektroliz yöntemi ile hidrojen üretimi”, Gazi Mühendislik Bilimleri Dergisi, 5(1): 1-8, (2019).
  • [14] Genç G., “ Hydrogen production potential of APEX fusion transmuter fueled minor actinide fluoride", International Journal of Hydrogen Energy, 35(19): 10190-10201, (2010).
  • [15] Özışık G., Demir N., Übeyli M., Yapıcı H., “Hydrogen production via water splitting process in a molten salt fuel breeder” International Journal of Hydrogen Energy, 35: 7357-7368, (2010).
  • [16] Demir N., “Hyrogen production via steam-methane reforming in a SOMBRERO fusion breeder with ceramic fuel particles”, International Journal of Hydrogen Energy, 38(2): 853-860 (2013).
  • [17] Acır A., Aktı S., “Investigation of hydrogen produciton potential of the LASER inertial confinement fusion fission energy (LIFE) engine”, International Journal of Hydrogen Energy, 44(45): 24867-24879, (2019).
  • [18] Yıldız B., Kazimi M.S., “Efficiency of the hydrogen production systems using alternative nuclear energy technologies”, Hydrogen Energy, 31: 77-92, (2006).
  • [19] Khalid F., Dinçer İ., Rosen M.A., “Model development analysis of a novel high-temperature electrolyser for gas phase electrolysis of hydrogen chloride for hydrogen production”, Hydrogen Energy, 43(19): 9112-9118, (2018).
  • [20] Dawood F., Anda M., Shafiullah G.M., “Hydrogen production for energy: An overview”, Hydrogen Energy, 45: 3847-3869, (2020).
  • [21] Orhan M.F., Dinçer İ., Rosen M.A., “Investigation of an integrated hydrogen produciton system based on nuclear and renewable energy sources: a new approach for sustainable hydrogen production via copper-chlorine thermochemical cycles”, International Journal of Energy Research, 36: 1388-1394, (2012).
  • [22] El-Emam R.S., Dinçer İ., “Nuclear-assisted hydrogen production” Springer, Editor: Meyers R., Encylopedia of Sustainability Science and Technology, (2018).
  • [23] Briesmeister J.F., “A General Monte Carlo N-Particle Transport Code, Version 4B, LA-13709M”, Los Alamos National Laboratory, MCNP, (2000).
  • [24] Lanchi M., Ceroli A., Liberatore R., Marrelli L., Maschietti M., Spandoni A., Tarquini P., “S-I thermochemical cycle: A thermodynamic analysis of the HI-H2O-I2 system and design of the HIx decomposition section”, International Journal of Hydrogen Energy, 34(5): 2121-2132, (2009).
  • [25] Fujiwara S., Kasai S., Yamauchi H., Yamada K., Makino S., Matsunaga K., Hoashi E., “Hydrogen production by high temperature electrolysis wih nuclear reactor”, Progress in Nuclear Energy, 50(2-6), 422-426, (2008).
  • [26] Bakır G., Genç G., Yapıcı H., “Study of a conceptual gas cooled accelerator driven system loaded with thorium dioxide mixed with transuranic dioxides discharged from PWR-MOX spent fuel in TRISO particles”, Nuclear Technology and Radiation Protection, 31(3): 197-206, (2016).
  • [27] Bakır G., Genç G., Yapıcı H., “Time-dependent neutronic analysis of a power-flattened gas cooled accelerator driven system fueled with thorium, uranium, plutonium and curium dioxides TRISO particles”, Science and Technology of Nuclear Installations, 1-11, (2016).
  • [28] Şahin S., Al-Eshakh M., “Fission power flattening in hybrid blankets using mixed fuel”, Fusion Technology, 12(3): 395-408, (1987).
  • [29] Şahin S., “Power flattening in a catalyzed (D,D) fusion driven hybrid blanket using nuclear waste actinides”, Nuclear Technology, 92: 93-105, (1990).
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Şulenur Asal 0000-0003-2711-9290

Adem Acır 0000-0002-9856-3623

Publication Date June 1, 2021
Submission Date April 20, 2020
Published in Issue Year 2021 Volume: 24 Issue: 2

Cite

APA Asal, Ş., & Acır, A. (2021). Uranyum Yakıtlı Bir Lazer Sürücülü Füzyon Reaktöründe (LIFE) Nötronik Performansın Hidrojen Üretimine Etkisi. Politeknik Dergisi, 24(2), 609-617. https://doi.org/10.2339/politeknik.723884
AMA Asal Ş, Acır A. Uranyum Yakıtlı Bir Lazer Sürücülü Füzyon Reaktöründe (LIFE) Nötronik Performansın Hidrojen Üretimine Etkisi. Politeknik Dergisi. June 2021;24(2):609-617. doi:10.2339/politeknik.723884
Chicago Asal, Şulenur, and Adem Acır. “Uranyum Yakıtlı Bir Lazer Sürücülü Füzyon Reaktöründe (LIFE) Nötronik Performansın Hidrojen Üretimine Etkisi”. Politeknik Dergisi 24, no. 2 (June 2021): 609-17. https://doi.org/10.2339/politeknik.723884.
EndNote Asal Ş, Acır A (June 1, 2021) Uranyum Yakıtlı Bir Lazer Sürücülü Füzyon Reaktöründe (LIFE) Nötronik Performansın Hidrojen Üretimine Etkisi. Politeknik Dergisi 24 2 609–617.
IEEE Ş. Asal and A. Acır, “Uranyum Yakıtlı Bir Lazer Sürücülü Füzyon Reaktöründe (LIFE) Nötronik Performansın Hidrojen Üretimine Etkisi”, Politeknik Dergisi, vol. 24, no. 2, pp. 609–617, 2021, doi: 10.2339/politeknik.723884.
ISNAD Asal, Şulenur - Acır, Adem. “Uranyum Yakıtlı Bir Lazer Sürücülü Füzyon Reaktöründe (LIFE) Nötronik Performansın Hidrojen Üretimine Etkisi”. Politeknik Dergisi 24/2 (June 2021), 609-617. https://doi.org/10.2339/politeknik.723884.
JAMA Asal Ş, Acır A. Uranyum Yakıtlı Bir Lazer Sürücülü Füzyon Reaktöründe (LIFE) Nötronik Performansın Hidrojen Üretimine Etkisi. Politeknik Dergisi. 2021;24:609–617.
MLA Asal, Şulenur and Adem Acır. “Uranyum Yakıtlı Bir Lazer Sürücülü Füzyon Reaktöründe (LIFE) Nötronik Performansın Hidrojen Üretimine Etkisi”. Politeknik Dergisi, vol. 24, no. 2, 2021, pp. 609-17, doi:10.2339/politeknik.723884.
Vancouver Asal Ş, Acır A. Uranyum Yakıtlı Bir Lazer Sürücülü Füzyon Reaktöründe (LIFE) Nötronik Performansın Hidrojen Üretimine Etkisi. Politeknik Dergisi. 2021;24(2):609-17.